Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

413results about "Supercritical condition processes" patented technology

Pyrolytic reactor

A pyrolytic reactor comprising a fuel injection zone, a combustion zone adjacent to the fuel injections zone, an expansion zone adjacent to the combustion zone, a feedstock injection zone comprising a plurality of injection nozzles and disposed adjacent to the expansion zone, a mixing zone configured to mix a carrier stream and feed material and disposed adjacent to the feedstock injection zone, and a reaction zone adjacent to the mixing zone. The plurality of injection nozzles are radially distributed in a first assembly defining a first plane transverse to the feedstock injection zone and in a second assembly transverse to the feedstock injection zone.
Owner:UOP LLC

Process for large-scale ammonothermal manufacturing of gallium nitride boules

A method for large-scale manufacturing of gallium nitride boules. Large-area single crystal seed plates are suspended in a rack, placed in a large diameter autoclave or internally-heated high pressure apparatus along with ammonia and a mineralizer, and grown ammonothermally. The seed orientation and mounting geometry are chosen to provide efficient utilization of the seed plates and of the volume inside the autoclave or high pressure apparatus. The method is scalable up to very large volumes and is cost effective.
Owner:SLT TECH

High pressure apparatus and method for nitride crystal growth

A high pressure apparatus and related methods for processing supercritical fluids. In a specific embodiment, the present apparatus includes a capsule, a heater, at least one ceramic ring but can be multiple rings, optionally, with one or more scribe marks and / or cracks present. In a specific embodiment, the apparatus optionally has a metal sleeve containing each ceramic ring. The apparatus also has a high-strength enclosure, end flanges with associated insulation, and a power control system. IN a specific embodiment, the apparatus is capable of accessing pressures and temperatures of 0.2-2 GPa and 400-1200° C., respectively.
Owner:SLT TECH

Material layer forming apparatus using supercritical fluid, material layer forming system comprising the same and method of forming material layer

Provided are a material layer forming apparatus using a supercritical fluid, a material layer forming system including the apparatus, and a method of forming a material layer using the system. The material layer forming system may include a high pressure pump supplying a supercritical fluid to a precursor storage container and the material layer forming apparatus, and maintaining the internal pressure of the precursor storage container, a reactant material storage container at a pressure such that the supercritical fluid is in a supercritical state, and a material layer forming apparatus. The material layer forming system may further include a pressure gauge adjusting the pressure of the material layer forming apparatus. The precursor of the precursor storage container may be supplied to the material layer forming apparatus using the supercritical fluid.
Owner:SAMSUNG ELECTRONICS CO LTD

Apparatus for processing materials in supercritical fluids and methods thereof

An apparatus and method for processing materials in supercritical fluids is disclosed. The apparatus includes a capsule configured to contain a supercritical fluid, a high strength enclosure disposed about the capsule and a sensor configured to sense pressure difference between an interior and an exterior of the capsule. The apparatus also includes a pressure control device configured to adjust pressure difference of the capsule in response to the pressure difference sensed by the sensor. The apparatus further includes at least one dividing structure disposed within the capsule that divides the capsule into a seed growing chamber and a nutrient chamber.
Owner:SLT TECH

Process utilizing seeds for making single-wall carbon nanotubes

InactiveUS7052668B2Facilitates nucleation phaseFaster and more reproducible and stable clusteringMaterial nanotechnologyFullerenesMetal catalystGas phase
A gas-phase method for producing high yields of single-wall carbon nanotubes with high purity and homogeneity is disclosed. The method involves using preformed metal catalyst clusters to initiate and grow single-wall carbon nanotubes. In one embodiment, multi-metallic catalyst precursors are used to facilitate the metal catalyst cluster formation. The catalyst clusters are grown to the desired size before mixing with a carbon-containing feedstock at a temperature and pressure sufficient to initiate and form single-wall carbon nanotubes. The method also involves using small fullerenes and preformed sections of single-wall carbon nanotubes, either derivatized or underivatized, as seed molecules for expediting the growth and increasing the yield of single-wall carbon nanotubes. The multi-metallic catalyst precursors and the seed molecules may be introduced into the reactor by means of a supercritical fluid. In addition the seed molecules may be introduced into the reactor via an aerosol or smoke.
Owner:RICE UNIV

Process and apparatus for upgrading coal using supercritical water

Coal is converted into hydrocarbon compounds using supercritical water. The process involves two stages; a first stage in which carbonaceous material is reacted with supercritical water at above 850K to produce a first supercritical fluid reaction mixture comprising hydrocarbon compounds; and a second stage in which hydrocarbon compounds are extracted from coal mixed with at least a portion of the first supercritical fluid at a temperature within a range of from the supercritical temperature of water to about 695K. Char from the second stage is finely divided and may be either be used outside the process, e.g. in a coal fired power station or a gasifier, or used as at least a portion of the carbonaceous material used in the first stage.
Owner:AIR PROD & CHEM INC

Reactor and process for upgrading heavy hydrocarbon oils

A reactor for conducting a process using supercritical water to upgrade a heavy hydrocarbon feedstock into an upgraded hydrocarbon product or syncrude with highly desirable properties (low sulfur content, low metals content, lower density (higher API), lower viscosity, lower residuum content, etc.) is described. The reactor is operable under continuous) semi-continuous or batch mode and is equipped with means to enable momentum, heat and mass transfer in and out of and within the reactor.
Owner:CHEVROU USA INC

Process and apparatus for large-scale manufacturing of bulk monocrystalline gallium-containing nitride

A method for large-scale manufacturing of gallium nitride includes a process for reducing and / or minimizing contamination in the crystals, for solvent addition to an autoclave, for improving or optimizing the solvent atmosphere composition, for removal of the solvent from the autoclave, and for recycling of the solvent. The method is scalable up to large volumes and is cost effective.
Owner:SLT TECH

High temperature high pressure capsule for processing materials in supercritical fluids

A capsule for containing at least one reactant and a supercritical fluid in a substantially air-free environment under high pressure, high temperature processing conditions. The capsule includes a closed end, at least one wall adjoining the closed end and extending from the closed end; and a sealed end adjoining the at least one wall opposite the closed end. The at least one wall, closed end, and sealed end define a chamber therein for containing the reactant and a solvent that becomes a supercritical fluid at high temperatures and high pressures. The capsule is formed from a deformable material and is fluid impermeable and chemically inert with respect to the reactant and the supercritical fluid under processing conditions, which are generally above 5 kbar and 550° C. and, preferably, at pressures between 5 kbar and 80 kbar and temperatures between 550° C. and about 1500° C. The invention also includes methods of filling the capsule with the solvent and sealing the capsule, as well as an apparatus for sealing the capsule.
Owner:SLT TECH

Apparatus for processing materials in supercritical fluids and methods thereof

An apparatus and method for processing materials in supercritical fluids is disclosed. The apparatus includes a capsule configured to contain a supercritical fluid, a high strength enclosure disposed about the capsule and a sensor configured to sense pressure difference between an interior and an exterior of the capsule. The apparatus also includes a pressure control device configured to adjust pressure difference of the capsule in response to the pressure difference sensed by the sensor. The apparatus further includes at least one dividing structure disposed within the capsule that divides the capsule into a seed growing chamber and a nutrient chamber.
Owner:SLT TECH

Process utilizing pre-formed cluster catalysts for making single-wall carbon nanotubes

InactiveUS6913789B2Facilitates nucleation phaseFaster and more reproducible and stable clusteringMaterial nanotechnologyFibre chemical featuresGas phaseMetal catalyst
A gas-phase method for producing high yields of single-wall carbon nanotubes with high purity and homogeneity is disclosed. The method involves using preformed metal catalyst clusters to initiate and grow single-wall carbon nanotubes. In one embodiment, multi-metallic catalyst precursors are used to facilitate the metal catalyst cluster formation. The catalyst clusters are grown to the desired size before mixing with a carbon-containing feedstock at a temperature and pressure sufficient to initiate and form single-wall carbon nanotubes. The method also involves using small fullerenes and preformed sections of single-wall carbon nanotubes, either derivatized or underivatized, as seed molecules for expediting the growth and increasing the yield of single-wall carbon nanotubes. The multi-metallic catalyst precursors and the seed molecules may be introduced into the reactor by means of a supercritical fluid. In addition the seed molecules may be introduced into the reactor via an aerosol or smoke.
Owner:RICE UNIV

Basket process and apparatus for crystalline gallium-containing nitride

An apparatus and associated method for large-scale manufacturing of gallium nitride is provided. The apparatus comprises a large diameter autoclave and a raw material basket. Methods include metered addition of dopants in the raw material and control of the atmosphere during crystal growth. The apparatus and methods are scalable up to very large volumes and are cost effective.
Owner:SORAA

Process and apparatus for growing a crystalline gallium-containing nitride using an azide mineralizer

An apparatus and associated method for large-scale manufacturing of gallium nitride is provided. The apparatus comprises a large diameter autoclave and a raw material basket. Methods include metered addition of dopants in the raw material and control of the atmosphere during crystal growth. The apparatus and methods are scalable up to very large volumes and are cost effective.
Owner:SLT TECH

High pressure apparatus and method for nitride crystal growth

An improved high pressure apparatus and related methods for processing supercritical fluids. In a specific embodiment, the present apparatus includes a capsule, a release sleeve, a heater, at least one ceramic segment or ring but can be multiple segments or rings, optionally, with one or more scribe marks and / or cracks present. In a specific embodiment, the apparatus optionally has a metal sleeve containing each ceramic ring. The apparatus also has a high-strength enclosure, end flanges with associated insulation, and a power control system. In a specific embodiment, the apparatus is capable of accessing pressures and temperatures of 0.2-2 GPa and 400-1200° C., respectively. Following a run, the release sleeve may be at least partially dissolved or etched to facilitate removal of the capsule from the apparatus.
Owner:SORAA

High Pressure Apparatus and Method for Nitride Crystal Growth

An improved high pressure apparatus and methods for processing supercritical fluids is described. The apparatus includes a capsule, a heater, and at least one ceramic ring contained by a metal sleeve. The apparatus is capable of accessing pressures and temperatures of 0.2-2 GPa and 400-1200° C.
Owner:SLT TECH

High temperature high pressure capsule for processing materials in supercritical fluids

A capsule for containing at least one reactant and a supercritical fluid in a substantially air-free environment under high pressure, high temperature processing conditions. The capsule includes a closed end, at least one wall adjoining the closed end and extending from the closed end; and a sealed end adjoining the at least one wall opposite the closed end. The at least one wall, closed end, and sealed end define a chamber therein for containing the reactant and a solvent that becomes a supercritical fluid at high temperatures and high pressures. The capsule is formed from a deformable material and is fluid impermeable and chemically inert with respect to the reactant and the supercritical fluid under processing conditions, which are generally above 5 kbar and 550° C. and, preferably, at pressures between 5 kbar and 80 kbar and temperatures between 550° C. and about 1500° C. The invention also includes methods of filling the capsule with the solvent and sealing the capsule, as well as an apparatus for sealing the capsule.
Owner:SLT TECH

Supercritical water process to upgrade petroleum

Provided is a process for the supercritical upgrading of petroleum feedstock, wherein the process includes the use of a start-up agent, wherein the use of the start-up agent facilitates mixing of the petroleum feedstock and water, thereby reducing or eliminating the production of coke, coke precursor, and sludge.
Owner:SAUDI ARABIAN OIL CO

Process to upgrade whole crude oil by hot pressurized water and recovery fluid

ActiveUS20090139715A1Upgraded more easilyLess coke formationThermal non-catalytic crackingRefining by water treatmentSulfurLow nitrogen
A process for upgrading whole crude oil utilizing a recovery fluid, depressurizing an extracted whole crude oil / recovery fluid mixture in a step-wise fashion, and subsequently contacting at least a portion of the whole crude oil with supercritical water fluid to produce high value crude oil having low sulfur, low nitrogen, and low metallic impurities for use as hydrocarbon feedstock.
Owner:SAUDI ARABIAN OIL CO

Supercritical fluid biomass conversion systems

Disclosed herein are supercritical fluid biomass conversion machines, systems, and methods for converting a wide range of biomass materials into a plurality of reaction products including fermentable sugars and various aromatic substances. In one embodiment, a method is disclosed that comprises the steps of: providing an extruder; conveying a mixture of the selected biomass material and water through the extruder and into a supercritical fluid biomass conversion zone; heating and further pressurizing the mixture within the supercritical fluid biomass conversion zone to yield at least supercritical water, wherein heat energy is supplied by means of an induction heating coil positioned circumferentially about the supercritical fluid biomass conversion zone; retaining the mixture within the supercritical fluid biomass conversion zone for a period of time sufficient to yield the plurality of reaction products; and separating the plurality of reaction products into at least a water soluble fraction and an organic solvent soluble fraction.
Owner:XTRUDX TECH

Method for producing nano-carbon materials

A method for producing nano-carbon materials, having a step wherein a starting material comprising one or more kinds of compounds selected from the group consisting saturated hydrocarbons, unsaturated hydrocarbons, saturated cyclic hydrocarbons, and alcohols whose atomic ratio of the component carbon to the component oxygen is more than 2.0 and a catalyst are together treated at a temperature in a range of from 100 to 800° C. while being compressed at a pressure in a range of from 0.2 to 60 MPa, where said starting material is converted into a supercritical fluid or a subcritical fluid while said supercritical fluid or said subcritical fluid being contacted with said catalyst, or a step wherein said starting material, said catalyst and a supplementary material capable of functioning as a reaction promotion medium are together treated at a temperature in a range of from 100 to 800° C. while being compressed at a pressure in a range of from 0.2 to 60 MPa, where at least said supplementary material is converted into a supercritical fluid or a subcritical fluid and said starting material is contacted with said supercritical fluid or said subcritical fluid formed from said supplementary material while being contacted with said catalyst.
Owner:CANON KK

Process and apparatus for growing a crystalline gallium-containing nitride using an azide mineralizer

An apparatus and associated method for large-scale manufacturing of gallium nitride is provided. The apparatus comprises a large diameter autoclave and a raw material basket. Methods include metered addition of dopants in the raw material and control of the atmosphere during crystal growth. The apparatus and methods are scalable up to very large volumes and are cost effective.
Owner:SLT TECH

Heavy oil treating method and heavy oil treating system

The invention is intended to produce high-pressure light fuel gas with good combustibility by contacting and reacting high-temperature, high-pressure water and heavy oil with each other in a contact-reaction unit to extract light oil components from the heavy oil and to remove metals. The high-temperature, high-pressure water and the heavy oil are introduced to the contact-reaction unit for contact and reaction with each other therein. Heavy oil components not dissolved in the high-temperature, high-pressure water are separated by precipitation from hydrocarbon gases and light oil components which are dissolved in the high-temperature, high-pressure water. The separated heavy oil components are burnt or incinerated without any further modification.
Owner:TAKAHASHI HIROKAZU +6

Process and apparatus for large-scale manufacturing of bulk monocrystalline gallium-containing nitride

A method for large-scale manufacturing of gallium nitride includes a process for reducing and / or minimizing contamination in the crystals, for solvent addition to an autoclave, for improving or optimizing the solvent atmosphere composition, for removal of the solvent from the autoclave, and for recycling of the solvent. The method is scalable up to large volumes and is cost effective.
Owner:SLT TECH

High rate reactor system

A process and system for upgrading an organic feedstock including providing an organic feedstock and water mixture, feeding the mixture into a high-rate, hydrothermal reactor, wherein the mixture is rapidly heated, subjected to heat, pressure, and turbulent flow, maintaining the heat and pressure of the mixture for a residence time of less than three minutes to cause the organic components of the mixture to undergo conversion reactions resulting in increased yields of distillate fuels, higher-quality kerosene and diesel fuels, and the formation of high octane naphtha compounds. Hydrocarbon products are cooled at a rate sufficient to inhibit additional reaction and recover of process heat, and depressurizing the hydrocarbon products, and separating the hydrocarbon products for further processing. The process and system can include devices to convert olefinic hydrocarbons into paraffinic hydrocarbons and convert olefinic byproduct gas to additional high-octane naphtha and / or heavier hydrocarbons by one of hydrogenation, alkylation, or oligomerization.
Owner:APPLIED RES ASSOCS INC

Method for producing nano-carbon materials

A method for producing nano-carbon materials, having a step wherein a starting material comprising one or more kinds of compounds selected from the group consisting saturated hydrocarbons, unsaturated hydrocarbons, saturated cyclic hydrocarbons, and alcohols whose atomic ratio of the component carbon to the component oxygen is more than 2.0 and a catalyst are together treated at a temperature in a range of from 100 to 800° C. while being compressed at a pressure in a range of from 0.2 to 60 MPa.
Owner:CANON KK

Taxane Particles and Their Use

Compositions are provided that include having at least 95% by weight of a taxane, or a pharmaceutically acceptable salt thereof, where the particles have a mean bulk density between about 0.050 g / cm3 and about 0.15 g / cm3, and / or a specific surface area (SSA) of at least 18 m2 / g, 20 m2 / g, 25 m2 / g, 30 m2 / g, 32 m2 / g, 34 m2 / g, or 35 m2 / g. Methods for making and using such compositions are also provided.
Owner:CRITITECH INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products