Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

315 results about "Ground reaction force" patented technology

In physics, and in particular in biomechanics, the ground reaction force (GRF) is the force exerted by the ground on a body in contact with it. For example, a person standing motionless on the ground exerts a contact force on it (equal to the person's weight) and at the same time an equal and opposite ground reaction force is exerted by the ground on the person.

Closed-loop force controlled body weight support system

A body weight support system that monitors and controls the level of support force within a stepcycle to result in normative center of mass movement and ground reaction forces. The system comprises a harness connected to a lift line which in turn is connected to a means for advancing and retracting the lift line. A control system is configured to monitor load on the cable and to regulate lift line advancement and retraction in response to load information. The support system can be combined with a treadmill for locomotor training of a subject.
Owner:RGT UNIV OF CALIFORNIA

Measuring forces in athletics

A system for measuring ground reaction force and analyzing the performance of an athlete in which force sensors are located in the athletes shoe and a three dimensional accelerometer is located adjacent the athletes centre of gravity and the signals from the accelerometer and the force sensors are recorded and used to derive the three orthogonal components of the ground reaction force (GRF). An artificial neural network is used to derive the three orthogonal components of GRIF
Owner:M B T L

Four-leg robot mechanism based on bionic design

The invention relates to a four-leg robot mechanism based on a bionic design. The four-leg robot mechanism consists of a body frame and four legs. The body frame consists of a front plate and a rear plate, two sides of the body frame are provided with flexible handles, and the robot mechanism is convenient to convey; each leg comprises a hip, a huckle, a knee and a crural part; the hip realizes two freedom degrees by adopting a differential bevel gear; the hip and the huckle are connected by an expansion sleeve to realize fast and convenient assembly and disassembly; the bevel gear drive motion is adopted by the knee; the crural part comprises a large cylinder, a small cylinder, a conical spring and a force sensor; and the large cylinder and the small cylinder are connected through the conical spring, so that the external impact force generated in the walking process of the robot can be buffered, the force sensor on a sole can acquire ground acting force, and the external environment can be conveniently sensed in real time and the robot can be subjected to balanced control conveniently. Through the bionic design idea, a spinal cord and a flexible foot mechanism of the robot are stimulated and designed, the flexibility of the robot movement is improved, the impact of the ground to the robot is reduced, and the robot mechanism has a compact structure and is convenient to install.
Owner:ZHEJIANG UNIV

Walking assistance device

A walking assistance device (1) has a body-mounted assembly (2) installed on the waist of a user (A), foot-mounted assemblies (3L, 3R) installed on feet, and leg links (4L, 4R) which connect the foot-mounted assemblies (3L, 3R) to the body-mounted assembly (2). The foot-mounted assemblies (3L, 3R) are provided with floor reaction force sensors (13L, 13R). Results obtained by multiplying the absolute values of floor reaction force vectors (three-dimensional vectors) detected by the floor reaction force sensors (13L, 13R) by a predetermined ratio are defined as target values of the magnitudes of the supporting forces transmitted to the leg links (4L, 4R) from the foot-mounted assemblies (3L, 3R). Actuators (20L, 20R) of the leg links (4L, 4R) are controlled such that the supporting forces having the magnitudes of the target values act on the leg links (4L, 4R) from the foot-mounted assemblies (3L, 3R) through the intermediary of joints (19L, 19R).
Owner:HONDA MOTOR CO LTD

Gait generation device for legged mobile robot

A vertical component or the like of a floor reaction force moment to be applied to a robot 1 is defined as a restriction object amount, and the permissible range of the restriction object amount is set. A provisional motion of the robot that satisfies a predetermined dynamic balance condition is determined on a predetermined dynamic model, and if a restriction object amount determined by the provisional motion deviates from the permissible range, then the motion of a desired gait is determined by correcting the provisional motion by changing the angular momentum changing rate of the robot from the provisional motion while limiting the restriction object amount to the permissible range on the dynamic model.
Owner:HONDA MOTOR CO LTD

Gait pattern generating device for legged mobile robot

A gait generation system of a legged mobile robot, in particular a biped robot that has the dynamic model expressing the relationship between the motion of the body and leg and the floor reaction force, and provisionally determines the current time gait parameters including at least parameters that determine leg trajectory and the like in response to a demand, supposes the parameters of a periodic gait, corrects the current time gait parameters such that the body trajectory determined from the dynamic model and the parameters of the current time gait, etc., converges to a body trajectory determined from the parameters of the periodic gait, and determines instantaneous values of the current time gait based on the corrected current time gait parameter. With this, the system can generates a gait of any stride, turning angle and walking period, including the floor reaction force acting on the legged mobile robot, that satisfies the dynamic equilibrium condition. Further, the system can generates a gait in such a manner that the displacement and velocity of each robot part are continues at the boundary of the generated gait and that succeeding thereto, can generate a gait that is high in the margin of stability, can predict future behavior of the robot and generate a gait such that no disadvantages such as posture divergence occurs.
Owner:HONDA MOTOR CO LTD

Momentum-Based Balance Controller For Humanoid Robots On Non-Level And Non-Stationary Ground

A momentum-based balance controller controls a humanoid robot to maintain balance. The balance controller derives desired rates of change of linear and angular momentum from desired motion of the robot. The balance controller then determines desired center of pressure (CoP) and desired ground reaction force (GRF) to achieve the desired rates of change of linear and angular momentum. The balance controller determines admissible CoP, GRF, and rates of change of linear and angular momentum that are optimally close to the desired value while still allowing the robot to maintain balance. The balance controller controls the robot to maintain balance based on a human motion model such that the robot's motions are human-like. Beneficially, the robot can maintain balance even when subjected to external perturbations, or when it encounters non-level and / or non-stationary ground.
Owner:HONDA MOTOR CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products