Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Medical implants and methods for regulating the tissue response to vascular closure devices

a technology of vascular closure and medical implants, applied in the field of medical implants and devices, can solve the problems of more difficult future percutaneous access at or through the placement of such matrices, more difficult to palpation of arterial pulses, and more difficult to achiev

Inactive Publication Date: 2005-01-06
VASCULAR THERAPIES LLC (US)
View PDF2 Cites 55 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

Although the perivascular placement of the matrix (e.g., collagen matrix) is effective in sealing the point of vascular wall breach thereby achieving hemostasis, the biodegradable collagen matrix can provoke tissue response(s) that can potentially envelop the blood vessel at the site of placement of the matrix. Such tissue response(s) may increase the morbidity of the vascular closure device, may render palpation of the arterial pulse (a helpful clinical pre-requisite for obtaining future vascular access) more difficult and make future percutaneous access at or through the placement of such matrices more difficult. By combining a therapeutic agent or agents to the collagen matrix, it is an object of the present invention to provide a method and a composition for reducing the host response to the perivascular collagen matrix vascular sealant applied to the wall of an arterial or venous puncture site.
One embodiment of the invention comprises a device composed of a resorbable, biocompatible matrix combined with at least one therapeutic agent. The device may optionally further comprise pharmaceutically acceptable adjuvants or additives. The device may be placed on the outer surface of a vessel to elute a tissue response regulating amount of a therapeutic agent, such as an agent that inhibits smooth muscle cell proliferation. The biocompatible matrix creates a reservoir of the therapeutic agent and controls the delivery kinetics.
Yet another aspect of the present invention comprises a method for reducing, eliminating or prophylactically treating the host response to the perivascularly applied collagen matrix (sealant) or hemostatic device. The hemostatic device may be biological, polymer based or mechanical. When placed at a site of vascular puncture or incision, the matrix, besides functioning as a sealant at the site of the vascular pucture site, incision site or site of vascular breach, allows for gradual elution of the therapeutic agent and serves as an extravascular source of drug delivery. Elution of the therapeutic agent such as rapamycin into and through the vascular wall occurs during the healing of anastamotic sites to prevent, suppress, or treat smooth muscle cell proliferation or other tissue responses to the vascular procedure.

Problems solved by technology

Such tissue response(s) may increase the morbidity of the vascular closure device, may render palpation of the arterial pulse (a helpful clinical pre-requisite for obtaining future vascular access) more difficult and make future percutaneous access at or through the placement of such matrices more difficult.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Medical implants and methods for regulating the tissue response to vascular closure devices
  • Medical implants and methods for regulating the tissue response to vascular closure devices
  • Medical implants and methods for regulating the tissue response to vascular closure devices

Examples

Experimental program
Comparison scheme
Effect test

example 1

Inhibitory Effect of Different Antiproliferative Agents

Prefabricated collagen matrices were placed in different antiproliferative drug solutions until complete saturation occurred. The antiproliferative drugs were chosen to represent the more active compounds capable of smooth muscle cell and fibroblast inhibition without inhibiting collagenase and elastase, which enzymatically inhibit collagen accumulation—one cause of restenosis. The collagen matrices were saturated with these compounds at a concentration of 25 μg / ml lyophilized, washed with 0.066 M phosphate buffer of pH 7.4 at 37° C. for 24 hours and cut in the shape of a disc with density of compound of about 5 μg / cm2. After washing, sterile discs 15 mm in diameter were placed in a 24-well culture plate, and cells were seeded at a density of 5,000 / cm2. Five days later, cell number was counted and enzymatic activity evaluated in the aliquots of media by chromogenic substrate hydrolysis and spectrophotometry. Among the tested a...

example 2

Capacity of Different Types of Matrices to Bind Rapamycin

In the next in vitro study, the ability of different matrices to bind rapamycin (sirolimus) was tested. A prefabricated collagen matrix (BioMend from Sulzer Calcitek, Inc., Carlsbad, Calif. or BIOPATCH containing collagen-alginate from Ethicon, Inc., Somerville, N.J.) with rapamycin (sirolimus) was prepared as described in Example 1 at an initial rapamycin (sirolimus) concentration of 250 μg / ml. Prefabricated chitosan (using the technique described in Aimin et al., Clin. Orthop. (1999), 366: 239-247) and fibrin matrices (using the technique mentioned in Example 5) were also placed in 250 μg / ml of rapamycin (sirolimus) in dimethylsulfoxide (DMSO) solution until complete saturation occurred. After solvent evaporation, the matrices combined with drugs were washed with 0.066 M phosphate buffer of pH 7.4 at 37° C. for 24 hours.

To compare matrix capacity, fluorescent rapamycin (sirolimus) derivate loaded onto 1.88 cm2 matrix sur...

example 3

Delivery Systems Using Liposomes

Liposomes represent a form of drug delivery system and offer controlled release of biologically active agents. They are used in pharmaceutical formulations, especially for water insoluble drugs, e.g., rapamycin. Liposomal entrapment has been shown to have considerable effect on the pharmacokinetics and tissue distribution of administered drugs. The formulations tested included nonionic liposomal formulation composed of glyceryl dilaureate, cholesterol, and polyoxylene-10-stearyl (all from Sigma-Aldrich Corp.) either at a weight ratio of 56:12:32 (Formulation 1) or nonionic 40% hydroalcoholic oil-in-water liposomal emulsion containing isopropyl myristate and mineral oil (both from Sigma-Aldrich Corp.) (Formulation 2).

Rapamycin was entrapped into each formulation at a concentration of 250 μg / ml in DMSO or isopropanol, and formed liposomes were applied on the surface of prefabricated collagen sheets to create maximal surface density of rapamycin. Sam...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

PropertyMeasurementUnit
Therapeuticaaaaaaaaaa
Biocompatibilityaaaaaaaaaa
Biodegradabilityaaaaaaaaaa
Login to View More

Abstract

Devices and methods for reducing, eliminating, preventing, suppressing, or treating tissue responses to hemostatic devices e.g., biological sealants or vascular procedures are disclosed. The invention employs a combination of resorbable, biocompatible matrix materials and a variety of therapeutic agents, such as antiproliferatives or antibiotics, applied to a vascular puncture or incision to achieve hemostasis following diagnostic or interventional vascular catheterizations and to treat neointimal hyperplasia and stenosis. A matrix of a material such as collagen provides a reservoir of a therapeutic agent such as rapamycin (sirolimus) and its derivatives and analogs for delivery at a tissue site at risk for vasculoproliferation, infection, inflammation, fibrosis or other tissue responses.

Description

BACKGROUND The present invention relates generally to therapeutic implants, devices, and methods useful for preventing, suppressing, or treating failure of hemodialysis vascular access grafts and other vascular procedures. The invention also relates to therapeutic implants comprising a matrix material and a therapeutic agent, wherein the composition placed in external contact with a blood vessel (perivascular implant of the composition) can be used to achieve hemostasis, e.g., to seal a breach in the vascular wall and to deliver a therapeutic agent capable of regulating the amount of tissue response to the implanted matrix. Vascular procedures such as construction of hemodialysis access grafts and angioplasty are performed to provide vascular access in patients with renal failure in need of hemodialysis dysfunction and treat conditions such as atherosclerosis. Hemodialysis vascular access grafts can be constructed as an arterio-venous fistula (e.g., Brecisa-Cimino), or as a graft ...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
IPC IPC(8): A61B17/00A61F2/06A61K31/4745A61M
CPCA61B17/0057A61B2017/00641A61B2017/00659A61B2017/00893A61K9/7007A61K31/4745A61L31/044A61L31/16A61L2300/416A61K31/436A61P9/10A61L31/125A61L31/146
Inventor IYER, SRIRAMKIPSHIDZE, NICHOLASNIKOLAYCHIK, VICTORROUBIN, GARY
Owner VASCULAR THERAPIES LLC (US)
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products