Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

4612results about "Non-optical parts" patented technology

Virtual or augmented reality headsets having adjustable interpupillary distance

A virtual or augmented reality headset is provided having a frame, a pair of virtual or augmented reality eyepieces, and an interpupillary distance adjustment mechanism. The frame includes opposing arm members, a bridge positioned intermediate the opposing arm members, and one or more linear rails. The adjustment mechanism is coupled to the virtual or augmented reality eyepieces and operable to simultaneously move the eyepieces in adjustment directions aligned with the plurality of linear rails to adjust the interpupillary distance of the eyepieces.
Owner:MAGIC LEAP

Eyeglasses with electrical components

A pair of glasses with one or more electrical components partially or fully embedded in the glasses is disclosed. In one embodiment, a pair of glasses includes a speaker and an electrical connector, both at least partially embedded in the glasses, with the speaker and the connector electrically coupled together by an electrical conductor. In another embodiment, a pair of glasses includes a storage medium and an electrical connector. In yet another embodiment, a pair of glasses includes a speaker, a coder / decoder, a processor and a storage medium. The glasses can serve as a multimedia asset player. In a further embodiment, some of the electrical components are in a base tethered to a pair of glasses. Instead of just receiving signals, in one embodiment, a pair of glasses also has a microphone and a wireless transceiver. In another embodiment, a pair of glasses includes a preference indicator that allows a user to indicate the user's preference regarding, for example, what is being output by the glasses. In yet another embodiment, there can be one or more control knobs on the glasses. In a further embodiment, a pair of glasses includes a camera and electrical components for wireless connection. In yet a further embodiment, a pair of glasses includes a sensor.
Owner:INGENIOSPEC

Wireless interactive headset

A wearable wireless audio device includes a support, an electronics circuit, and a speaker. The support includes a first ear stem and an orbital, and is configured to support at least one lens in a wearer's field of view. The electronics circuit is supported by the support and is configured to receive at least one digital audio file and generate an audio signal indicative of the at least one digital audio file. The speaker is supported by the support, and is directed toward at least one of the wearer's ears. The speaker is configured to convert the audio signal into sound. The speaker has a speaker face, and the speaker is configured to rotate from a first position in which the speaker face is substantially parallel to a yz-plane to a second position in which the speaker is inclined at an angle with respect to the yz-plane. The speaker is coupled to the support with a speaker pivot, and is configured to rotate about the speaker pivot while maintaining the speaker face substantially parallel to a yz-plane. The speaker is configured to move along an axis substantially parallel to a z-axis with respect to the support.
Owner:OAKLEY INC

Eyeglasses with electrical components

A pair of glasses with one or more electrical components partially or fully embedded in the glasses is disclosed. In one embodiment, a pair of glasses includes a speaker and an electrical connector, both at least partially embedded in the glasses, with the speaker and the connector electrically coupled together by an electrical conductor. In another embodiment, a pair of glasses includes a storage medium and an electrical connector. In yet another embodiment, a pair of glasses includes a speaker, a coder / decoder, a processor and a storage medium. The glasses can serve as a multimedia asset player. In a further embodiment, some of the electrical components are in a base tethered to a pair of glasses. Instead of just receiving signals, in one embodiment, a pair of glasses also has a microphone and a wireless transceiver. In another embodiment, a pair of glasses includes a preference indicator that allows a user to indicate the user's preference regarding, for example, what is being output by the glasses. In yet another embodiment, there can be one or more control knobs on the glasses. In a further embodiment, a pair of glasses includes a camera and electrical components for wireless connection. In yet a further embodiment, a pair of glasses includes a sensor.
Owner:INGENIOSPEC

Eyeglasses with hearing enhanced and other audio signal-generating capabilities

Novel techniques for hearing enhancement based on a pair of glasses are disclosed. In one embodiment, the glasses include a first lens holder, a second lens holder, a bridge element, a first temple, a second temple, a first speaker, a second speaker, a microphone and at least one electrical component that performs a hearing enhanced function to enhance audio signals from the microphone to be sent to the speakers for the user to hear. At least one electrical component in the glasses is for generating other audio signals by the speakers, with the other audio signals originating from signals other than audio signals captured by the microphone. In another embodiment, some of the electrical components are in a portable device, wired or wirelessly, coupled to the glasses. In yet another embodiment, the glasses function as a headset, with other electrical components in the portable device. In such embodiment, since the glasses can provide a number of different hearing functions, a third party may not be able to tell whether the user is wearing the glasses to have his hearing enhanced, or for hearing other audio signals.
Owner:INGENIOSPEC

Eyeglasses with a clock or other electrical component

A pair of glasses includes a clock that is at least partially embedded in the glasses. The clock can be in one of the temples of the glasses. In one implementation, the clock can be positioned at a region close to a hinge of the corresponding temple, with the clock facing inward towards the user. The clock can also be in a temple arrangement. Instead of or in addition to a clock, other types of electrical components can be at least partially embedded into a pair of glasses or a temple arrangement of a pair of glasses. For example, the other electrical components can pertain to a RFID tag, a temperature sensor or an eyewear finder.
Owner:INGENIOSPEC

Flip Up Interchangeable System

InactiveUS20140043682A1Easily and temporarily removeCurb piratingSpectales/gogglesAuxillary optical partsEyewearComputer science
Eyewear having a pivoted engagement of lenses with a lens frame worn on the head of the user. A lens assembly holding the lens or lenses is rotatable out of the user's view when not required for viewing such as when conversing with a friend or when wearing tinted lenses and needing unfiltered viewing. Biasing of the rotatable assembly provides for automatic rotation upward out of the field of view of the user upon release of a retaining component. The rotational engagement of lenses relative to a head worn frame may be employed in combination with prescription lenses, sunglass lenses, or 3D filtering lenses for viewing 3D media in the same rotational engagement and in one mode of the device are removable.
Owner:HUSSEY PATRICK +2

Information system and method for providing information using a holographic element

In the following, the essential points are summarized again by means of groups of characteristics which each individually and in combination with one another characterize the invention specifically: 1. Information system for providing information in correlation with light incident on an eye, having a holographic element disposed in front of the eye, and an optical scanning device which detects light incident on the eye by way of the holographic element. 2. Information system according to Point 1, wherein the optical scanning device is at a fixed predetermined angular ratio with respect to the holographic element. 3. Information system according to Point 1 or 2, wherein the optical scanning device detects light which is refracted by the holographic element before it impinges on the eye and does not enter the eye. 4. Information system according to one of the preceding points, wherein the optical scanning device detects light which was first reflected back from the eye and was then refracted by the holographic element. 5. Information system according to one of the preceding points, wherein the holographic element refracts light originating from the field of vision of the eye only at several discrete wavelengths in the visible range before the light impinges on the eye for the detection by the optical scanning device, and refracts light reflected back from the eye only at one discrete wavelength in the infrared range for the detection by the optical scanning device. 6. Information system according to one of the preceding points, wherein the holographic element refracts light originating from the field of vision of the eye at fewer than 20, fewer than 10 or fewer than 5 discrete wavelengths in the visible range either before the light impinges on the eye or after its backscattering as a result of the eye for the detection by the optical scanning device. 7. Information system according to one of the preceding points, wherein the holographic element refracts light originating from the field of vision of the eye at a discrete wavelength in the infrared range either before the light impinges on the eye or after its backscattering as a result of the eye for the detection by the optical scanning device. 8. Information system according to one of the preceding points, wherein the holographic element refracts light reflected back by the eye only at a discrete wavelength in the infrared range for the detection by the optical scanning device. 9. Information system according to one of the preceding points, wherein the holographic element refracts light of one or several discrete wavelengths, at which the optical scanning device has a high sensitivity. 10. Information system according to one of the preceding points, wherein the holographic element refracts light a several discrete wavelengths such that the refracted light is guided to a common point, and the angle of incidence of the light on this point permits a clear optionally also wavelength-independent conclusion on the angle of incidence of the light upon the holographic element. 11. Information system according to one of the preceding points, having an optical projection device which projects light into the eye by way of the holographic element. 12. Information system according to Point 11, wherein the light detected by the optical detection device and the light projected in front of the optical projection device run in the opposite direction through a common light guiding lens system and can be focused such by the optical scanning device or projection device that their respective beams describe the same path from or into the eye. 13. Information system for providing information in correlation with information obtained from an eye, having a holographic element disposed in front of the eye, and an optical projection device which projects light into the eye by way of the holographic element. 14. Information system according to one of Points 11 to 13, wherein the optical projection device projects light only at one or several discrete wavelengths in the visible range and / or at a wavelength in the infrared range. 15. Information system according to one of Points 11 to 14, wherein the holographic element refracts the wavelengths of the projected light. 16. Information system according to one of Points 11-15, wherein the optical projection device is in a fixed predetermined angular ratio with respect to the holographic element. 17. Information system according to Point 16, wherein the holographic element comprises one or more optical flags, whose light reflection characteristics can be used by the information system by means of a photodetector for calibrating a projection angle of the optical projection device and / or a light guiding device. 18. Information system according to Point 17, including Point 12, wherein the information system uses the light reflection characteristics of the optical flags for calibrating a scanning angle of the optical scanning device and / or a light guiding device. 19. Information system according to Point 17, wherein the optical flags are generated in that reflecting elements are imaged during the creating of the holographic element such in the holographic element that they (something is missing) reflect light of one or several wavelengths which, corresponding to the predetermined angular ratio with respect to the optical projection device is incident on the holographic element, back along the path of incidence. 20. Information system according to Point 19, wherein the photodetector device has a splitter mirror which is arranged such in the light beam of the optical projection device that it guides a portion of the light, which impinges on the splitter mirror against the projection direction, in the direction of a photodetector which detects in at least two areas situated concentrically around one another. 21. Information system according to one of the preceding points, wherein the holographic element has light-refracting characteristics at one or several discrete wavelengths, which correspond to a reflection on the concave side of an area constructed according to the curvature of a rotationally symmetrical ellipsoid. 22. Information system according to one of the preceding points, wherein the holographic element has light refracting characteristics at one or several discrete wavelengths, which correspond to a refraction on the concave side of an area constructed according to the curvature of a rotationally symmetrical ellipsoid, which refraction corresponds to a reflection on a respective conical surface which is rotationally symmetrical about the axis of rotation of the ellipsoid and is perpendicular with respect to the ellipsoid at the site of the refraction. 23. Method of providing information in correlation with light incident on an eye, whereby a holographic element is disposed in front of the eye, and an optical scanning device detects the light incident on the eye by means of the holographic element. 24. Method according to Point 23, whereby the optical scanning device is at a fixed predetermined angular ratio with respect to the holographic element. 25. Method according to Point 23 or 24, whereby the optical scanning device detects light which is refracted by the holographic element before impinging on the eye and does not enter the eye. 26. Method according to one of Points 23 to 25, whereby the optical scanning device detects light which was first reflected back from the eye and was then refracted by the holographic element. 27. Method according to one of Points 23 to 26, whereby the holographic element refracts light originating from the field of vision of the eye only at several discrete wavelengths in the visible range before its impinging on the eye for the detection by the optical scanning device and refracts light reflected back from the eye only at a discrete wavelength in the infrared range for the detection by the optical scanning device. 28. Method according to one of Points 23 to 27, whereby the holographic element refracts light originating from the field of vision of the eye at fewer than 20, fewer than 10 or fewer than 5 discrete wavelengths in the visible range either before its impinging on the eye or after its backscattering as a result of the eye for the detection by the optical scanning device. 29. Method according to one of Points 23 to 28, whereby the holographic element refracts light originating from the visual field of the eye at a discrete wavelength in the infrared range either before its impinging on the eye or after its backscattering as a result of the eye for the detection by the optical scanning device. 30. Method according to one of Points 23 to 29, whereby the holographic element refracts light reflected back from the eye only at a discrete wavelength in the infrared range for the detection by the optical scanning device. 31. Method according to one of Points 23 to 30, whereby the holographic element refracts light of one or several discrete wavelengths, at which the optical scanning device has a high sensitivity. 32. Method according to one of Points 23 to 31, whereby the holographic element refracts light at several discrete wavelengths such that the refracted light is guided to a common point, an the angle of incidence of the light onto this point allows a clear, optionally also wavelength-independent conclusion on the angle of incidence of the light upon the holographic element. 33. Method according to one of Points 23 to 32, whereby an optical projection device projects light by way of the holographic element into the eye. 34. Method according to Point 33, whereby the light detected by the optical scanning device and the light projected in front of the optical projection device run in the opposite direction through a common light guiding lens system and can be focused such by the optical scanning device or projection device that their respective beams describe the same path from or into the eye. 35. Method of providing information in correlation with information obtained from an eye, whereby a holographic element is disposed in front of the eye, and an optical projection device projects light by way of the holographic element into the eye. 36. Method according to points 33 to 35, whereby the optical projection device projects light only at one or several discrete wavelengths in the visible range and / or at a wavelength in the infrared range. 37. Method according to one of Points 33 to 36, whereby the holographic element refracts the wavelengths of the projected light. 38. Method according to one of Points 33 to 37, whereby the optical projection device is in a fixed predetermined angular ratio with respect to the holographic element. 39. Method according to Point 38, whereby the holographic element is equipped with one or more optical flags, whose light reflection characteristics can be used by means of a photodetector device for calibrating a projection angle of the optical projection device and / or a light guiding device. 40. Method according to Point 39, including Point 34, whereby the light reflection characteristics of the optical flags are used for calibrating a scanning angle of the optical scanning device and / or a light guiding device. 41. Method according to Point 39, whereby the optical flags are generated in that reflecting elements are imaged during the creating of the holographic element such in the holographic element that they beam light of one or more wavelengths which, corresponding to the predetermined angular ratio with respect to the optical projection device is incident on the holographic element, back along the incidence path. 42. Method according to Point 41, whereby the photodetector device is equipped with a photodetector detecting in at least two areas situated concentrically around one another, and a splitter mirror which is arranged such in the light beam of the optical projection device that it directs a portion of the light impinging on the splitter mirror against the projecting direction, in the direction of the photodetector. 43. Method according to one of Points 23 to 42, whereby the holographic element has light-refracting characteristics at one or several discrete wavelengths which correspond to a reflection on the concave side of an area constructed according to a curvature of a rotationally symmetrical ellipsoid. 44. Method according to one of Points 23 to 43, whereby the holographic element has light-refracting characteristics at one or several discrete wavelengths, which correspond to a refraction on the concave side of an area constructed according to a curvature of a rotationally symmetrical ellipsoid, which refraction corresponds to a reflection on a respective conical surface rotationally symmetrical about the axis of rotation of the ellipsoid, which conical surface is perpendicular with respect to the ellipsoid at the site of the refraction. While the preceding description with respect to the title is limited to embodiments falling under the initially mentioned generic terms “scanning information system” and “projecting information system”, each individual discussed characteristic of their disclosure can also be used in an embodiment of the systems, devices and methods initially identified by reference to their full content. The applications by the same applicant and / or the same inventors mentioned in the present application should be considered to be a correlated invention complex.
Owner:APPLE INC

Eyeglasses having detachable lenses

Eyeglasses includes a frame including right and left portions each including a recess abutted on a bridge, a projection on an endpiece, and an aperture proximate the projection. The eyeglasses further includes two lenses each including an indentation at an outer end and a hole proximate the indentation, two temples, and two connecting mechanisms pivotably coupled to both the temples and the frame. Each connecting mechanism including includes a pin projected from an inner side. The hole is aligned with the aperture. The indentation is engaged with the projection. An inner end of the lens is rested on the recess. The pin is inserted into the hole and the aperture for fastening each lens onto the frame. The original lenses can be easily changed with other lenses having a different color and / or shape by replacement as long as such lenses have the same specifications as the original lenses.
Owner:IRENE CORP

Front for full-rim glasses frame with holding band device and rapid fixing of the lenses to the frame

InactiveUS20060268218A1Minimal effortExtreme aesthetic flexibilityNon-optical partsLens assembliesTemporal RegionsEngineering
Front for full-rim glasses frames with a holding device and rapid fixing of the lenses to the frame. The front being of the type with a monopiece arch transversely projected with respect to the face of the user, which includes, at the temporal ends, two shaped and curved cross-pieces joined by a connecting intermediate nose bridge. Each cross-piece provides hinging of the related side, and each cross-piece near to the intermediate connecting nose bridge provides a curved projection, which provides a first of the two ends of flexible holders that partially enclose the peripheral edge of the lens to be joined to the front, the other side being provided with a second end, introduced by a through-hole obtained in correspondence to the temporal region of the front, that is equipped with a tooth that engages unidirectionally the portion of the second end of the flexible holders.
Owner:MEDANA GUIDO

Eyewear supporting after-market electrical components

Techniques for providing eyewear with electrical components are disclosed. The electrical components can provide electrical technology to eyewear (e.g., eyeglasses) without having to substantially compromise aesthetic design principles of the eyewear. Often, the electrical components can be attached to the eyewear as an after-market enhancement. The electrical components can operate independently or together with other electrical components provided elsewhere.
Owner:INGENIOSPEC

Monitoring device, method and system

A monitoring device (20) and method (200) for monitoring the health of a user is disclosed herein. The monitoring device (20) preferably includes eyewear (25) with an optical sensor (30), a digital storage and processing device (35) with a display member (40) and a control component (43), and a connection cable (45). The monitoring device (20) preferably displays the following information about the user: pulse rate; calories expended by the user of a pre-set time period; target zones of activity; time; and distance traveled.
Owner:IMPACT SPORTS TECH

Eyeglasses with activity monitoring

In one embodiment, eyewear having an activity monitoring capability is disclosed. Activity, such as motion, steps or distance, can be measured by an activity detector. The measured activity can then be used in providing activity-related information to a user of the eyewear. Advantageously, the user of the eyewear is able to easily monitor their degree of activity.
Owner:INGENIOSPEC

Eyeglasses with activity monitoring

In one embodiment, eyewear having an activity monitoring capability is disclosed. Activity, such as motion, steps or distance, can be measured by an activity detector. The measured activity can then be used in providing activity-related information to a user of the eyewear. Advantageously, the user of the eyewear is able to easily monitor their degree of activity.
Owner:INGENIOSPEC

Eyewear having lenses with rims

A method for assembly of an eyewear and an eyewear structure are provided to incorporate preferred properties into the eyewear. A relatively less curved lens is encircled by a protruding rim element, thereby forming a lens unit which is removably attached to the eyewear structure. The protruding rim element has a much curved outer periphery thereof such that the relatively less curved lens can be assembled in a much curved frame structure.
Owner:SHELDON BRENT

Custom eyeglass manufacturing method

A Custom Eyeglass Manufacturing Method includes a wavefront measuring device with a plurality of cameras directed at a patient's face. The resulting images are processed by a computer to determine the location of pupils, center of pupils, pupil distance, width of face, ear location, distance of corneal apex from the wavefront measuring device, distance from ear to corneal apex, and other desired parameters necessary to quantify a patient's face for custom eyeglass fittings. Moldings may be applied to patient's nose, temples, and ears in order to construct a pair of eyeglasses that fix perfectly on patient's head. Additionally, a test frame may be used in combination with the wavefront measuring device in order to allow computer to find some of the areas automatically. Lastly, registration markers may be applied to either the test frame, the moldings, or both in order to further aide the computer in locating desired parameters.
Owner:ESSILOR INT CIE GEN DOPTIQUE +1

Eyeglasses with RFID tags or with a strap

A pair of glasses includes a clock that is at least partially embedded in the glasses. The clock can be in one of the temples of the glasses. In one implementation, the clock can be positioned at a region close to a hinge of the corresponding temple, with the clock facing inward towards the user. The clock can also be in a temple arrangement. Instead of or in addition to a clock, other types of electrical components can be at least partially embedded into a pair of glasses or a temple arrangement of a pair of glasses. For example, the other electrical components can pertain to a RFID tag, a temperature sensor or an eyewear finder.
Owner:IPVENTURE

Floating lens mounting system

Various embodiments of an eyeglass and eyeglass system are provided that can maintain the geometric and optical quality of a lens supported by the eyeglass. The eyeglass can comprise a frame, a support member carried by the frame, and a lens mounting area or groove extending at least partially along at least one of the frame and the support member. The support member can be pivoted, moved, or deflected relative to the frame between a retaining position and an open position. In the open position, the lens can be seated within the lens mounting area. In the retaining position, the support member and the frame retain the lens without exerting deformative forces on the lens. Accordingly, the as-molded geometric and optical qualities of the lens can be preserved.
Owner:OAKLEY INC

Eyewear supporting electrical components and apparatus therefor

Techniques for providing eyewear with electrical components are disclosed. The electrical components can provide electrical technology to eyewear without having to substantially compromise aesthetic design principles of the eyewear. The electrical components can be partially or completely internal to eyewear. The electrical components can also be attached to the eyewear as an after-market enhancement. The electrical components can operate independently or together with other electrical components provided elsewhere. Apparatus for presenting after-market electrical components are also disclosed.
Owner:INGENIOSPEC

Enhanced electro-active lens system

A lens system and optical devices that provide enhanced vision correction are disclosed. The lens system includes an electro-active layer that provides correction of at least one higher order aberration. The higher order correction changes dynamically based on a user of the lens system's needs, such as a change by the user's gaze distance, pupil size, or changes in tear film following blinking, among others. Optical devices are also described that use these and other lens systems to provide correction of higher order aberrations. An optical guide is also described that guides the user's line of sight to see through a lens region having a correction for a higher order aberration.
Owner:E VISION LLC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products