Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

340results about "Blood pressure measurement devices" patented technology

Systems and methods for making non-invasive physiological assessments by detecting induced acoustic emissions

Systems and methods for assessing a physiological parameter of a target tissue wherein a pulse of focused ultrasound is applied to a target tissue site thereby inducing oscillation of the target tissue. By these systems and methods, a property of an acoustic signal emitted from the oscillating target tissue is measured and related to a physiological property of the tissue. Specific applications for systems and methods of the present invention include the assessment and monitoring of intracranial pressure (ICP), arterial blood pressure (ABP), CNS autoregulation status, vasospasm, stroke, local edema, infection and vasculitus, as well as diagnosis and monitoring of diseases and conditions that are characterized by physical changes in tissue properties.
Owner:PHYSIOSONICS +1

Method and apparatus for ultrasonic continuous, non-invasive blood pressure monitoring

Ultrasound is used to provide input data for a blood pressure estimation scheme. The use of transcutaneous ultrasound provides arterial lumen area and pulse wave velocity information. In addition, ultrasound measurements are taken in such a way that all the data describes a single, uniform arterial segment. Therefore a computed area relates only to the arterial blood volume present. Also, the measured pulse wave velocity is directly related to the mechanical properties of the segment of elastic tube (artery) for which the blood volume is being measured. In a patient monitoring application, the operator of the ultrasound device is eliminated through the use of software that automatically locates the artery in the ultrasound data, e.g., using known edge detection techniques. Autonomous operation of the ultrasound system allows it to report blood pressure and blood flow traces to the clinical users without those users having to interpret an ultrasound image or operate an ultrasound imaging device.
Owner:GENERAL ELECTRIC CO

Method and system for measuring pulmonary artery circulation information

Minimally invasive systems and methods are described for measuring pulmonary circulation information from the pulmonary arteries. A transbronchial Doppler ultrasound catheter is advanced through the airways and in the vicinity of the pulmonary artery. Doppler ultrasound energy is sent through the airway wall and across the pulmonary artery to obtain velocity information of blood flowing through the artery. The velocity information is used to compute pulmonary circulation information including but not limited to flowrate.
Owner:EKOS CORP

Tracking cardiac forces and arterial blood pressure using accelerometers

Modular, miniaturized cardiovascular sensors, systems, methods, and wearable devices for the non-obtrusive evaluation, monitoring, and high-fidelity mapping of cardiac mechanical and electromechanical forces and central arterial blood pressure are presented herein. The sensor manufacturing process is also presented. Using accelerometers, the sensors register body-surface (preferably torso-surface) movements and vibrations generated by cardiac forces. The sensors may contain single-use or reusable components, which may be exchanged to fit different body sizes, shapes, and anatomical locations; they may be incorporated into clothing, bands, straps, and other wearable arrangements. The invention presents a practical, noninvasive solution for electromechanical mapping of the heart, which is useful for a wide range of healthcare applications, including the remote monitoring of heart failure status and the guidance of cardiac resynchronization therapy. Exercise and cardiovascular fitness tracking applications are also presented.
Owner:SHUSTERMAN VLADIMIR

Method and system for monitoring a health condition

A system and method for monitoring a health condition are disclosed. The system includes a patient management application, a data store and a monitoring device. The monitoring device includes an optical sensor, a Doppler sensor, and a computing device adapted to provide health parameter values including oxygen saturation of the blood, blood flow, blood pressure, heart rate, and cardiac output.
Owner:CARDIO ART TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products