Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

1598results about "Battery overheat protection" patented technology

System and method for tracking and archiving battery performance data

An intelligent rechargeable battery pack having a battery management system for monitoring and controlling the charging and discharging of the battery pack is described. The battery management system includes a memory for storing data related to the operation of the battery, and the battery management system is also configured to communicate the data related to the operation of the battery to other processors for analysis.
Owner:ZOLL CIRCULATION

Viral distribution of battery management parameters

A carrier, such as a battery, that queries a memory of a charger or charging circuit, or the memory of equipment or discharging circuit powered by the battery, to determine the relative date or version of data, operating parameters and / or software on both the battery and the equipment, and either provides updated data, operating parameters and / or software to the equipment, or retrieves later dated data, operating parameters and / or software from the equipment to update the memory of the battery and / or further distribute the updated data, operating parameters and / or software to other batteries or equipment.
Owner:ZOLL CIRCULATION

Battery management system for control of lithium power cells

An intelligent rechargeable battery pack having a battery management system for monitoring and controlling the charging and discharging of the battery pack is described. The battery management system includes primary and secondary protection circuits for monitoring the charging and discharging of the battery. Individual battery cells forming the battery pack are connected by a main bus to a connector for connection to a battery charger or a device to be powered, and the main bus may be interrupted by a switch controlled by the battery management system to prevent damage to the battery during charging or discharging of the battery.
Owner:ZOLL CIRCULATION

Protection methods, protection circuits and protective devices for secondary batteries, a power tool, charger and battery pack adapted to provide protection against fault conditions in the battery pack

In a cordless power tool system, protection methods, circuits and devices are provided to protect against fault conditions within a battery pack that is operatively attached to a power tool or charger, so as to prevent internal or external damage to the battery pack or attached tool or charger. The exemplary methods, circuits and devices address fault conditions such as over-charge, over-discharge, over-current, over-temperature, etc.
Owner:BLACK & DECKER INC

Tunable wireless energy transfer for sensors

A mobile wireless receiver for use with a first electromagnetic resonator coupled to a power supply includes, a load associated with a sensor and configured to power a sensor, and a second electromagnetic resonator configured to be coupled to the load and moveable relative to the first electromagnetic resonator, wherein the second electromagnetic resonator is configured to be wirelessly coupled to the first electromagnetic resonator to provide resonant, non-radiative wireless power to the second electromagnetic resonator from the first electromagnetic resonator, and wherein the second electromagnetic resonator is configured to be tunable during system operation so as to at least one of tune the power provided to the second electromagnetic resonator and tune the power delivered to the load.
Owner:WITRICITY CORP

Safety systems for wireless energy transfer in vehicle applications

A vehicle powering wireless receiver for use with a first electromagnetic resonator coupled to a power supply. The wireless receiver including a load configured to power the drive system of a vehicle using electrical power, a second electromagnetic resonator adapted to be housed upon the vehicle and configured to be coupled to the load, a safety system for to provide protection with respect to an object that may become hot during operation of the first electromagnetic resonator. The safety system including a detection subsystem configured to detect the presence of the object in substantial proximity to at least one of the resonators, and a notification subsystem operatively coupled to the detection subsystem and configured to provide an indication of the object, wherein the second resonator is configured to be wirelessly coupled to the first resonator to provide resonant, non-radiative wireless power to the second resonator from the first resonator.
Owner:WITRICITY CORP

Secure wireless energy transfer in medical applications

A medical device-powering wireless receiver for use with a first electromagnetic resonator coupled to a power supply includes a load configured to power the medical device using electrical power, and a second electromagnetic resonator adapted to be housed within the medical device and configured to be coupled to the load, wherein the second electromagnetic resonator is configured to be wirelessly coupled to the first electromagnetic resonator to provide resonant, non-radiative wireless power to the second electromagnetic resonator from the first electromagnetic resonator; wherein the square root of the product of the respective Q factors is greater than 100; and an authorization facility to confirm compatibility of the resonators and provide authorization for initiation of transfer of power.
Owner:WITRICITY CORP

Tunable wireless energy transfer for appliances

A mobile wireless receiver for use with a first electromagnetic resonator coupled to a power supply includes a load associated with electrically powering an appliance, and a second electromagnetic resonator configured to be coupled to the load and moveable relative to the first electromagnetic resonator, wherein the second electromagnetic resonator is configured to be wirelessly coupled to the first electromagnetic resonator to provide resonant, non-radiative wireless power to the second electromagnetic resonator from the first electromagnetic resonator, and wherein the second electromagnetic resonator is configured to be tunable during system operation so as to at least one of tune the power provided to the second electromagnetic resonator and tune the power delivered to the load.
Owner:WITRICITY CORP

Tunable wireless energy transfer for lighting applications

A mobile wireless receiver for use with a first electromagnetic resonator coupled to a power supply includes a load associated with a movable lighting unit, the load adapted to provide electrical energy to the lighting unit, a second electromagnetic resonator configured to be coupled to the load and moveable relative to the first electromagnetic resonator, wherein the second electromagnetic resonator is configured to be wirelessly coupled to the first electromagnetic resonator to provide resonant, non-radiative wireless power to the second electromagnetic resonator from the first electromagnetic resonator, and wherein the second electromagnetic resonator is configured to be tunable during system operation so as to at least one of tune the power provided to the second electromagnetic resonator and tune the power delivered to the load.
Owner:WITRICITY CORP

Multi-resonator wireless energy transfer for exterior lighting

A mobile wireless receiver for use with a first electromagnetic resonator coupled to a power supply and a second electromagnetic resonator coupled to at least one of a power supply and the first electromagnetic resonator. The mobile wireless receiver includes a load associated with an outdoor lighting unit that draws energy from the load to power a light source associated with the outdoor lighting unit, and a third electromagnetic resonator configured to be coupled to the load and movable relative to at least one of the first electromagnetic resonator and the second electromagnetic resonator, wherein the third resonator is configured to be wirelessly coupled to at least one of the first electromagnetic resonator and the second electromagnetic resonator to provide resonant, non-radiative wireless power to the third electromagnetic resonator from at least one of the first electromagnetic resonator and the second electromagnetic resonator.
Owner:WITRICITY CORP

Method and system for battery protection

A method of conducting an operation including a battery. The battery includes a cell having a voltage. Power is transferable between the cell and the electrical device. A controller is operable to control a function of the battery pack. The controller is also operable with a voltage at least one of equal to and greater than an operating voltage threshold. The cell is operable to selectively supply voltage to the controller. The method includes the act of enabling the controller to operate when the voltage supplied by the cell is below the operating voltage threshold.
Owner:MILWAUKEE ELECTRIC TOOL CORP

Method and system for battery protection

A system and method for battery protection. In some aspects, a method of conducting an operation including a battery pack, includes the acts of monitoring a first battery pack condition at a first monitoring rate, determining when a second battery pack condition reaches a threshold, after the second battery pack condition reaches the threshold, monitoring the first battery pack condition at a second monitoring rate, the second monitoring rate being different than the first monitoring rate. In some aspects, a method of conducting an operation including a battery, the battery including a cell having a voltage, power being transferable between the cell and the electrical device, a controller operable to control a function of the battery pack, the controller being operable with a voltage at least one of equal to and greater than an operating voltage threshold, the cell being operable to selectively supply voltage to the controller, includes the act of enabling the controller to operate when the voltage supplied by the cell is below the operating voltage threshold.
Owner:MILWAUKEE ELECTRIC TOOL CORP

Thermal management systems for battery packs

A cordless power tool has a housing which includes a mechanism to couple with a removable battery pack. The battery pack includes one or more battery cells as well as a system to dissipate heat from the battery pack.
Owner:BLACK & DECKER INC

Autonomous robot auto-docking and energy management systems and methods

A method for energy management in a robotic device includes providing a base station for mating with the robotic device, determining a quantity of energy stored in an energy storage unit of the robotic device, and performing a predetermined task based at least in part on the quantity of energy stored. Also disclosed are systems for emitting avoidance signals to prevent inadvertent contact between the robot and the base station, and systems for emitting homing signals to allow the robotic device to accurately dock with the base station.
Owner:IROBOT CORP

Electric tool powered by a plurality of battery packs and adapter therefor

An electric power tool is powered by a plurality of battery packs connected in series. The electric power tool comprises a controller configured to receive signals outputted from the integrated circuits located in each of the battery packs. A first voltage level-shifter is disposed between the controller of the electric power tool and one of the integrated circuits of the battery packs. The first voltage level-shifter is configured to shift the voltage level of the signal outputted from the respective integrated circuit to the tool controller to an acceptable level for the controller.
Owner:MAKITA CORP

Multi-resonator wireless energy transfer for exterior lighting

A mobile wireless receiver for use with a first electromagnetic resonator coupled to a power supply and a second electromagnetic resonator coupled to at least one of a power supply and the first electromagnetic resonator. The mobile wireless receiver includes a load associated with an outdoor lighting unit that draws energy from the load to power a light source associated with the outdoor lighting unit, and a third electromagnetic resonator configured to be coupled to the load and movable relative to at least one of the first electromagnetic resonator and the second electromagnetic resonator, wherein the third resonator is configured to be wirelessly coupled to at least one of the first electromagnetic resonator and the second electromagnetic resonator to provide resonant, non-radiative wireless power to the third electromagnetic resonator from at least one of the first electromagnetic resonator and the second electromagnetic resonator.
Owner:WITRICITY CORP

Systems and methods for automatic connection and charging of an electric vehicle at a charging station

The invention provides systems and methods for connecting an electric or hybrid electric vehicle to a charging station. Automated charging and docking processes may be provided. In some embodiments, a vehicle arrival and position may be detected. The vehicle may be charged with a charging arm and some automated vehicle positioning may occur. The vehicle may be charged and released. Fault detection may occur.
Owner:PROTERRA OPERATING CO INC

Efficiency monitor for inductive power transmission

An efficiency monitor for monitoring the efficiency of power transmission by an inductive power outlet. The efficiency monitor includes an input power monitor, for measuring the input power delivered to the primary coil, and an output power monitor, for measuring the output power received by the secondary coil. The input and output powers are used by a processor to determine an index of power-loss. A circuit breaker may be used to disconnect the inductive power outlet in case of excessive power loss.
Owner:POWERMAT TECHNOLOGIES

Infusion pumps

Ambulatory infusion pumps, pump assemblies, cartridges, baseplates, cannulas, insertion tools, and related components as well as combinations thereof and related methods.
Owner:MEDTRONIC MIMIMED INC

Low-power battery pack with safety system

The present application is directed toward a method and system for conserving battery power in low power systems. According to one aspect of the invention, a battery with a low power processor is used to shut off the monitor circuit that determines the charge remaining on a battery. Periodically, the low power processor will wake-up and power on the monitor circuit to determine the remaining charge of the battery. According to another aspect of the invention, there is a safety override circuit. The safety override circuit is a fail-safe that allows charge to flow from the battery when there is a fault with the low power processor, for example if the low power processor fails to wake-up.
Owner:HEARTWARE INC

System and method for controlling power transfer across an inductive power coupling

A signal transfer system for controlling power transfer across an inductive power coupling. A transmission circuit associated with an inductive power receiver is configured to transmit a control signal to a reception circuit associated with an inductive power outlet. The transmission circuit includes an ancillary load and a switching unit for modulating power drawn by a secondary inductive coil according to the control signal. The reception circuit is configured to monitor power provided to a primary inductive coil thereby detecting the modulated control signal. The signal transfer system may be used to regulate the power supplied by the inductive coupling and to detect the presence of the secondary coil.
Owner:POWERMAT TECHNOLOGIES

Battery pack manager

In a battery pack manager that manages series-connected rechargeable unit cells, a cell equalizer equalizes the cell voltages by individually discharging the unit cells according to deviations from reference voltages. An overcharge / overdischarge detector detects an overcharge and an overdischarge state of each unit cell. An inhibit circuit prevents the cell equalizer from discharging the unit cells when the overcharge / overdischarge detector is activated to reduce the cell voltage variability, which would otherwise occur as a result of interference from the overcharge / overdischarge detector, so that the overcharge / overdischarge states of all unit cells can be determined with precision. Connecting lines of the unit cells are monitored to detect a line-cut. The inhibit circuit further inhibits the cell equalizer when the connecting lines are being monitored to reduce the cell voltage variability, which would otherwise occur as a result of interference from the line-cut detection, so that false line-cut detection is avoided.
Owner:DENSO CORP

Battery pack and cordless power tool having the same

A compact battery pack with high handling ability and restraining degradation of battery cells. The battery pack includes an insertion portion to be inserted into a handle portion of a cordless power tool and an accommodation portion in which all battery cells are accommodatable. A protection board with a protection circuit that protects batteries against overcharge and over-discharge is installed in the insertion portion. A switching element is connected between the battery cells and a drive motor of the power tool. An air passage in communication with the battery pack is formed within the handle and a main housing of the cordless power tool. The switching element is positioned at the air passage.
Owner:HITACHI KOKI CO LTD

Method and system for battery protection

A method of conducting an operation including a battery. The battery includes a cell having a voltage. Power is transferable between the cell and the electrical device. A controller is operable to control a function of the battery pack. The controller is also operable with a voltage at least one of equal to and greater than an operating voltage threshold. The cell is operable to selectively supply voltage to the controller. The method includes the act of enabling the controller to operate when the voltage supplied by the cell is below the operating voltage threshold.
Owner:MILWAUKEE ELECTRIC TOOL CORP

Implantable power management system

The method and system for managing power supplied from a charging circuit to a power source in an implantable medical device comprises the steps of and circuitry for: measuring the current drain of the medical device; measuring the elapsed time since the last full charge of a power source of the device; calculating the actual capacity of the power source (corrected for fade) based on the variable of current drain and the variable of elapsed time; calculating the operating time based on the variable of current drain and the variable of the actual capacity of the power source; measuring the voltage of the power source; signaling the medical device when the power source voltage has reached a certain low value which requires disconnection from the power source; disconnecting, during discharging, the power source from the medical device upon the power source reaching a certain low voltage in order to prevent deep discharging of the power source and subsequent damage; precisely limiting the charging voltage to the power source in order to prevent overcharging beyond safe limits; disconnecting, during charging, the power source from the charging circuit upon the power source reaching a certain high voltage in order to prevent overcharging of the power source and subsequent damage; sensing when the electromagnetic waves being transmitted by an RF transmitter / charger induce a voltage level above a certain value at an RF receiver of the implanted power management system; reconnecting power supply inputs of the medical device to the power source upon sensing this induced high voltage level; monitoring the temperature of the power source during charging and discharging; disconnecting the charging circuitry from the power source if the temperature of the power source raises above a certain level during charging; reconnecting the charging circuitry to the power source when the temperature of the power source drops below a certain low value during charging; disconnecting the implanted medical device from the power source if the temperature of the power source raises above a certain level during discharging; and, reconnecting the medical device to the power source when the temperature of the power source drops below a certain low value during discharging.
Owner:EXONIX

Secondary Battery Protection Circuit, Battery Pack and Thermosensitive Protection Switch Device

A protection circuit is provided for protecting a secondary battery from overcharging and excessive discharge current by a simple circuit. The protection circuit is provided with a connection terminal (T3) for connecting the secondary battery (6); a connection terminal (T1) for connecting a charging device for charging the secondary battery (6) and / or a load device driven by a discharge current from the secondary battery (6); a bimetal switch (SW1) that is provided between the connection terminals (T1, T3) and turned off in the case of exceeding a specified temperature set beforehand; a heater (R2) for heating the bimetal switch (SW1); and an integrated circuit (IC1) for turning the bimetal switch (SW1) off by causing the heater (R2) to generate heat if a voltage applied to the connection terminal (T3) by the secondary battery (6) exceeds a preset reference voltage.
Owner:PANASONIC CORP

Method of controlling battery current limiting

The method of controlling battery current limiting controls maximum charging and discharging current values according to the state of charge of the battery. The method of controlling current limiting integrates battery charging and discharging current to compute a first state of charge, determines first charging and discharging current limit value candidates from that first state of charge, computes a second state of charge based on battery voltage, and determines second charging and discharging current limit value candidates from that second state of charge. Further, the method takes the smaller of the first and second charging and discharging current limit value candidates as the charging and discharging current limit values for charging and discharging the battery.
Owner:SANYO ELECTRIC CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products