Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

109 results about "Vascular implant" patented technology

Vagal nerve stimulation using vascular implanted devices for treatment of atrial fibrillation

An abnormally rapid ventricular cardiac rate that results from atrial fibrillation can be reduced by stimulating a vagal nerve of the heart. An apparatus for such stimulation includes a power transmitter that emits a radio frequency signal. A stimulator, implanted in a blood vessel adjacent the vagal nerve, has a pair of electrodes and an electrical circuit thereon. The electrical circuit receives the radio frequency signal and derives an electrical voltage from the energy of that signal. The electrical voltage is applied in the form of pulses to the pair of electrodes, thereby stimulating the vagal nerve. The pattern of that stimulating pulses can be varied in response to characteristics of the atrial fibrillation or the ventricular contractions.
Owner:KENERGY INC

Vascular embolization with an expansible implant

A vascular implant formed of a compressible foam material has a compressed configuration from which it is expansible into a configuration substantially conforming to the shape and size of a vascular site to be embolized. Preferably, the implant is formed of a hydrophilic, macroporous foam material, having an initial configuration of a scaled-down model of the vascular site, from which it is compressible into the compressed configuration. The implant is made by scanning the vascular site to create a digitized scan data set; using the scan data set to create a three-dimensional digitized virtual model of the vascular site; using the virtual model to create a scaled-down physical mold of the vascular site; and using the mold to create a vascular implant in the form of a scaled-down model of the vascular site. To embolize a vascular site, the implant is compressed and passed through a microcatheter, the distal end of which has been passed into a vascular site. Upon entering the vascular site, the implant expands in situ substantially to fill the vascular site. A retention element is contained within the microcatheter and has a distal end detachably connected to the implant. A flexible, tubular deployment element is used to pass the implant and the retention element through the microcatheter, and then to separate the implant from the retention element when the implant has been passed out of the microcatheter and into the vascular site.
Owner:MICROVENTION INC

Vascular embolization with an expansible implant

InactiveUS7201762B2Reduce riskFacilitates precise and highly controllable deploymentAdditive manufacturing apparatusDiagnosticsVascular embolizationVascular implant
A vascular implant formed of a compressible foam material has a compressed configuration from which it is expansible into a configuration substantially conforming to the shape and size of a vascular site to be embolized. Preferably, the implant is formed of a hydrophilic, macroporous foam material, having an initial configuration of a scaled-down model of the vascular site, from which it is compressible into the compressed configuration. The implant is made by scanning the vascular site to create a digitized scan data set; using the scan data set to create a three-dimensional digitized virtual model of the vascular site; using the virtual model to create a scaled-down physical mold of the vascular site; and using the mold to create a vascular implant in the form of a scaled-down model of the vascular site. To embolize a vascular site, the implant is compressed and passed through a microcatheter, the distal end of which has been passed into a vascular site. Upon entering the vascular site, the implant expands in situ substantially to fill the vascular site. A retention element is contained within the microcatheter and has a distal end detachably connected to the implant. A flexible, tubular deployment element is used to pass the implant and the retention element through the microcatheter, and then to separate the implant from the retention element when the implant has been passed out of the microcatheter and into the vascular site.
Owner:MICROVENTION INC

Method and apparatus for anchoring cardiovascular implants

Methods, devices and systems facilitate retention of a variety of therapeutic devices. Devices generally include an anchoring element, which has been designed to promote fibrotic ingrowth, and an anchored device, which has been designed to firmly engage the complementary region of the anchoring element. The anchoring element may be placed in a minimally invasive procedure temporally separated from the deployment of the anchored device. Once enough time has passed to ensure appropriate fixation of the anchoring element by tissue and cellular ingrowth at the site of placement, the anchored device may then be deployed during which it firmly engages the complementary region of the anchoring element. In this manner, a firm attachment to the implantation site may be made with a minimum of required hardware. Some embodiments are delivered through a delivery tube or catheter and while some embodiments may require laparoscopy or open surgery for one or more of the placement procedures. Some embodiments anchor devices within the cardiovascular tree while others may anchor devices within the gastrointestinal, peritoneal, pleural, pulmonary, urogynecologic, nasopharyngeal or dermatologic regions of the body. An alternative embodiment provides for the placement of the anchoring element and anchored device simultaneously, but allows for their removal separately. This embodiment allows the device, which may be placed only temporarily and be designed to be removed, to experience significant fibrotic ingrowth, but then to be easily detached from the ingrowth-anchored region to allow for simple and quick device removal.
Owner:THERANOVA LLC

Systems and devices for cerebral aneurysm repair

ActiveUS20140207180A1Good equipment stabilityImprove adhesionDiagnosticsGlovesVascular implantBlood component
An embolization device for treating ischemic stroke is disclosed, having a surface, wherein the body portion is configured to have a radiopaque and electropositive surface under physiological conditions when the device is emplaced, which ionically binds a blood component in an amount effective to promote stability of device in situ to bind to a tissue component in an amount effective to increase adhesion of the device as compared to a device without an electropositive surface. Embolic coils being so delivered are electrolytically detachable in under 10 seconds, according to the disclosed vascular implant systems.
Owner:BLOCKADE MEDICAL

Method and apparatus for testing pulsatile endurance of a vascular implant

A method for testing the pulsatile endurance of a vascular implant 3 comprises placing a resilient insert 4 into the implant and repeatedly expanding and contracting the insert, thereby expanding and contracting the implant. The insert preferably has a cavity therein and is repeatedly expanded and contracted by repeatedly increasing and decreasing the pressure in the cavity.
Owner:ANSON MEDICAL LTD

Small-caliber biotic artificial blood vessel with anti-thrombus formation and anti-intimal hyperplasia functions

The invention relates to a bioengineering technology, in particular to a small-caliber biotic artificial blood vessel with anti-thrombus formation and anti-intimal hyperplasia functions. Firstly, the key technology of accellular materials and natural polymer composition is used, and through multiple modes, neurotrophic factors are effectively coupled as functional modules to perform modification on blood vessel supports. Furthermore, through the strategy of constructing in body, the small-caliber engineering blood vessel modified by the neurotrophic factors is transplanted in body, the scour and the pressure of hemodynamics are overcome in body, endothelial progenitor cells in circulation are captured initiatively, the endothelial progenitor cells are further induced to differentiate into endothelial cells in situ, and the progress and the quality of endothelialization of blood vessel graft are speeded. Meanwhile, the generation of blood capillaries is promoted and nurtured, the blood vessel implants are promoted to remodel in body, therefore, the effects of anti-thrombus formation and anti-intimal hyperplasia can be effectively achieved, and the patency rate after the small-caliber biotic artificial blood vessel is transplanted is increased. Active small-caliber tissue engineering blood vessels used for coronary arterie bypass grafting, hematodialysis and cerebrovascular replacement in clinic are built.
Owner:广州宏畅生物科技有限公司
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products