Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

146 results about "OCB mode" patented technology

OCB mode (Offset Codebook Mode) is an authenticated encryption mode of operation for cryptographic block ciphers. OCB mode was designed by Phillip Rogaway, who credits Mihir Bellare, John Black, and Ted Krovetz with assistance and comments on the designs. It is based on the authenticated encryption mode IAPM due to Charanjit S. Jutla.

Cryptographic apparatus for supporting multiple modes

The present invention relates to a cryptographic apparatus for encrypting data stored in a memory. The cryptographic apparatus of the present invention operates in the ECB, CBC, CBC-MAC, counter and OCB modes using small and simple elements. The cryptographic apparatus minimizes data communication between CPU and the cryptographic apparatus to improve the performance of the communication system. On the other hand, the input buffer and output buffer of the cryptographic apparatus are configured to store at least two blocks respectively, so that the performance of the cryptographic apparatus is maximized. Furthermore, the cryptographic apparatus supports zero-padding, so that the process of the CPU is minimized.
Owner:SAMSUNG ELECTRONICS CO LTD

Liquid crystal display device having OCB mode and method of driving the same

A liquid crystal display device (LCD) which applies a high voltage for carrying out a bend transition of an optically compensated birefringence (OCB) liquid crystal as a reset voltage to a common electrode of the OCB liquid crystal in the LCD having an OCB mode, and a method of driving the same are provided. In the OCB mode LCD, a voltage of a DC-DC converter is applied to a common electrode to reset the OCB liquid crystal at an initial stage of every frame or before applying data to each pixel. In addition, when one frame is divided into red, green and blue fields, and sequentially driven, a voltage of the DC-DC converter is applied to the common electrode to reset the OCB liquid crystal before each field begins. The DC-DC converter applies a voltage of 15V to 30V to the common electrode. An optical transmittance of the liquid crystal at the time of reset becomes zero (black state). Accordingly, a blurring effect can be removed while a reset time can be decreased, thereby increasing the brightness.
Owner:SAMSUNG MOBILE DISPLAY CO LTD

LCD for speeding initial bend state, driver and method thereof

The present invention is directed to a liquid crystal display device and a method for driving the same for a fast transition into a bend state at initial operation such as immediately after power is inputted in a liquid display device with an OCB mode. According to one feature of the present invention, as power is inputted, a timing controller controls to output at least one of a gate voltage for a scan signal, a data voltage for a picture signal, and a driving voltage for a backlight by outputting a first switching signal to a switching unit, and controls to output one of an external bias voltage and a common electrode voltage by outputting a second switching signal to the switching unit so that fast transition into bend state of liquid crystal arranged in a LCD panel is accomplished. As a result, by applying a voltage of less level than that of the typical common electrode voltage to the LCD panel, as DC voltage of at least 10 volt to 20 volt is applicable to a common electrode, time for transition into bend state can be reduced at initial operation of the liquid crystal display device using the LCD panel with OCB mode.
Owner:SAMSUNG DISPLAY CO LTD

Liquid crystal display using liquid crystal with bend alignment and driving method thereof

When a transition voltage, which is higher than a display voltage for image display, is applied to liquid crystal, the liquid crystal can transition to a bend alignment. Therefore, by applying a transition voltage to liquid crystal prior to image display period only for a transition time which depends on a transition voltage so as to cause a bend transition in the liquid crystal, an OCB mode LCD with a high speed response can be obtained. An interval d between pixel regions is set to be less than, for example, a transition distance of 5 μm, so that a bend transition expands over inter-pixel regions to thereby achieve a bend transition all over the display region. In an active matrix type LCD, a electrical field is caused to be generated between a common electrode and data lines or gate lines disposed between pixel electrodes due to application of a transition voltage to the common electrode, thereby obtaining a bent transition over the entire surface of the display screen. Further, a pretilt angle set by an alignment film is determined to be 1.2° or more, such that a great number of transition sources for causing a bend transition are generated to thereby secure a high speed bend transition. Also, the pretilt angle is set to be 3° or less for accelerating a response time in a bend alignment.
Owner:SANYO ELECTRIC CO LTD

Liquid crystal display device

An object of the present invention is to provide a small-sized active matrix type liquid crystal display device that may achieve large-sized display, high precision, high resolution and multi-gray scales. According to the present invention, gray scale display is performed by combining time ratio gray scale and voltage gray scale in a liquid crystal display device which performs display in OCB mode. In doing so, one frame is divided into subframes corresponding to the number of bit for the time ratio gray scale. Initialize voltage is applied onto the liquid crystal upon display of a subframe.
Owner:SEMICON ENERGY LAB CO LTD

Liquid crystal display device

InactiveUS20060012590A1Fast transferQuickly transfer alignment stateCathode-ray tube indicatorsNon-linear opticsHeating timeEngineering
A liquid crystal display device comprises a liquid crystal display panel including a liquid crystal layer for a display in an OCB mode, a heating unit which heats the liquid crystal display panel, a temperature detecting unit for detecting a temperature of the liquid crystal display panel, a time measuring unit which measures a heating time that the heating unit has operated, and a transfer drive circuit which applies a transfer drive voltage to the liquid crystal layer to transfer the alignment state of liquid crystal molecules from a splay alignment to a bend alignment in advance. The transfer drive circuit is configured to determine a transfer time as an application period of the transfer drive voltage on the basis of a relationship between the heating time and temperature which are obtained from the time measuring unit and temperature detecting unit at a desired timing.
Owner:JAPAN DISPLAY CENT INC

Transflective liquid crystal display device

A transflective liquid crystal display device includes a first and a second substrates, a liquid crystal layer, and a plurality of reflective electrodes and transparent electrodes. The liquid crystal layer is interposed between the first and the second substrates and functions in an OCB mode. The reflective electrode and the transparent electrode in one picture element are spaced apart from each other to produce a transverse electric field when a voltage is applied across the liquid crystal layer.
Owner:WINTEK CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products