Bonded body of galvanized steel sheet and adherend, and manufacturing method thereof
a technology of galvanized steel and bonded body, which is applied in the direction of metal layered products, metallic material coating processes, synthetic resin layered products, etc., can solve the problems of ultra-fine irregularities on aluminum alloy surfaces, no strong bonding techniques have been proposed for galvanized steel sheets and resin molded articles, and no strong bonding techniques have been proposed for galvanized steel sheets and metal alloys or frp by way of adhesives
- Summary
- Abstract
- Description
- Claims
- Application Information
AI Technical Summary
Benefits of technology
Problems solved by technology
Method used
Image
Examples
example 1
Preparative Example 1
Preparation of PPS Composition (1)
[0154]A 50 L autoclave equipped with a stirrer was charged with 6214 g of a sodium sulfide (nonahydrate) Na2S.9H2O and 17000 g of N-methyl-2-pyrrolidone. The temperature was gradually raised to 205° C. under stirring and under a nitrogen gas stream, and 1355 g of water were distilled off. The system was cooled to 140° C., after which 7160 g of p-dichlorobenzene and 5000 g of N-methyl-2-pyrrolidone were added. The system was sealed under a nitrogen gas stream. The temperature of the system was raised to 225° C. over 2 hours, whereupon polymerization proceeded for 2 hours at 225° C. Thereafter, the temperature of the system was raised to 250° C. over 30 minutes, whereupon polymerization proceeded for another 3 hours at 250° C. Once polymerization was over, the system was cooled to room temperature and the resulting polymer was separated in a centrifugal separator. The solid fraction of the polymer was repeatedly washed with warm w...
example 2
Preparative Example 2
Preparation of PPS Composition (2)
[0157]The PPS (1) obtained in Preparative example 1 was cured for 3 hours at 250° C. in an oxygen atmosphere to yield a PPS (3). The melt viscosity of the obtained PPS (3) was 1800 poise.
[0158]Next, 5.98 kg of the resulting PPS (3) and 0.02 kg of polyethylene “Nipolon Hard 8300A (by Tosoh)” were mixed uniformly beforehand in a tumbler. Thereafter, melt kneading was carried out in a biaxial extruder “TEM-35B” at a cylinder temperature of 300° C., under supply of glass fibers having an average fiber diameter of 9 μm and a fiber length of 3 mm “RES03-TP91” through a side feeder, to an addition amount of 40 wt %. A pelletized PPS composition (2) was obtained as a result. The obtained PPS composition (2) was dried for 5 hours at 175° C.
example 3
Preparative Example 3
Preparation of PPS Composition (3)
[0159]Herein, 7.2 kg of the PPS (2) obtained in Preparative example 1 and 0.8 kg of a glycidyl methacrylate-ethylene copolymer “Bondfast E (by Sumitomo Chemical)” were mixed uniformly beforehand in a tumbler. Thereafter, melt kneading was carried out in a biaxial extruder “TEM-35B” at a cylinder temperature of 300° C., under supply of glass fibers having an average fiber diameter of 9 μm and a fiber length of 3 mm “RES03-TP91” through a side feeder, to an addition amount of 20 wt %. A pelletized PPS composition (3) was obtained as a result. The obtained PPS composition (3) was dried for 5 hours at 175° C.
PUM
Property | Measurement | Unit |
---|---|---|
Temperature | aaaaa | aaaaa |
Length | aaaaa | aaaaa |
Length | aaaaa | aaaaa |
Abstract
Description
Claims
Application Information
- R&D Engineer
- R&D Manager
- IP Professional
- Industry Leading Data Capabilities
- Powerful AI technology
- Patent DNA Extraction
Browse by: Latest US Patents, China's latest patents, Technical Efficacy Thesaurus, Application Domain, Technology Topic, Popular Technical Reports.
© 2024 PatSnap. All rights reserved.Legal|Privacy policy|Modern Slavery Act Transparency Statement|Sitemap|About US| Contact US: help@patsnap.com