Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Cartilage repair plug

a cartilage repair and plug technology, applied in the field of cartilage repair plugs, can solve the problems of cartilage trauma, deterioration of previously damaged cartilage, and surrounding knees, elbows, and shoulders, and achieve the effects of preventing them from falling loose, improving the height-to-diameter ratio, and improving the anchorability of plugs

Inactive Publication Date: 2004-08-19
ABS
View PDF47 Cites 60 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

The solution provides a safe, simple, and fast procedure for repairing cartilage defects without the need for long-term regrowth or multiple invasive surgeries, ensuring availability, reducing infection risk, and minimizing costs, while maintaining the structural integrity of the joint.

Problems solved by technology

Younger persons, ranging in age from children to young adults, often engage extensively in rigorous athletic activities, such as skiing, surfing, football, basketball, and even roller blading, which frequently results in accidents which cause traumatic injury to cartilage, particularly that surrounding the knees, elbows, and shoulders.
Osteoarthritis may also set in following a traumatic injury to cartilage which is not repaired or is repaired improperly, leading to a further deterioration of the previously damaged cartilage.
When the defect is caused by traumatic injury and is extensive enough in size to involve a large mass of cartilage, the damage is not capable of self healing.
Heretofore it was not possible to repair extensive cartilage defects.
Cartilage which has become defective through damage caused by traumatic injury from accident, whether sports related or from other causes, such as an automobile accident, as well as cartilage which has become defective as a result of deterioration due to the spread of a chronic degenerative disease, also typically gives rise to and is accompanied by severe pain, especially where the sites of the damage or disease is proximal to or constitutes part of an articulating joint surface, such as the knee.
The damaged or diseased portion of the cartilage is usually also accompanied by swelling of the surrounding tissue; and, where an articulating joint is involved, a disruption in the flow of lubricating synovial fluid around the joint often occurs, which, in addition to being a cause of the source of pain, usually leads to further mechanical abrasion, wear, and deterioration of the cartilage itself, finally resulting in the onset of osteoarthritis and complete disablement of the articulating joint, ultimately requiring complete replacement of the joint.
In the case of very young patients, however, complete replacement of a joint is problematic in that the patient's overall skeletal bone structure is not yet fully developed and is still growing, so that the replaced joint may actually be outgrown and no longer be of appropriate size for the patient when their fully matured adult size, stature, and skeletal structure is attained.
Moreover, in the past, many replacement knee, elbow joints and shoulder joints have typically had a maximum active useful life of only about ten years, due to wear and tear and erosion of the articulating surfaces of the joint with repetitive use over time, thereby necessitating periodic invasive surgery to replace the entire joint.
There are, however, several major problems and disadvantages associated with all of the various prior art cartilage replacement devices and methods which have heretofore been proposed.
The use of naturally derived cartilage plugs presents the major problems of lack of availability, limitations on the size of the repair that can be effected, and high potential for infection and transmission of disease.
Where the portion of damaged or diseased cartilage that is to be replaced is more extensive, however, such a self-harvesting procedure is not feasible because a sufficiently large plug cannot be extracted from another site without causing damage to or a weakening of the cartilage and underlying bone at the place of harvesting, or when being harvested from a site at or near another articulating joint, without causing damage to the operability of the articulating joint itself at the point of harvesting.
Moreover, there are a limited number of suitable locations on the body from which cartilage can be extracted for use elsewhere.
Depending on the age and overall health of the patient, as well as on other considerations, it may not be feasible to perform both procedures at the same time.
Such a dual procedure is time consuming and costly, and may be objected to on cost grounds in some insurance or managed care contexts.
Because the procedures are invasive, there is the additional risk of infection and pain to the patient occasioned by the need for two separate surgical procedures, at the cartilage harvesting site and at the cartilage repair emplacement site.
This alternative, however, also presents the same problems of limited sources of availability and potential for infection or transmission of disease.
In cases where it is necessary to reset larger portions of damaged or diseased cartilage from a patient, although procedures utilizing natural cartilage replacement plugs derived from cadaveric sources are not limited by considerations as to the amount of cartilage that can be excised from a particular location in order to preclude damage to or a weakening of the remaining cartilage and / or the joint, at the donor site, as occurs in a self-harvesting situation, there are still limitations as to the total amount of suitable cartilage that can be harvested from cadaveric sources, and the overall reliability of obtaining acceptable cadaveric cartilage sources at all is not high.
Some of the obstacles to this latter method involve the selection of one or more appropriate growth factors; the selection of appropriate delivery vehicles for controlled, time-release of the growth factors to ensure that the proper concentration of growth factor is maintained at the implant site; and necrosis of immature or newly regenerated tissue under stress or when subjected to loading conditions.
The principal disadvantages of this method are that it is very complicated and time consuming, requiring up to several months to fully culture the cartilage cells to the point where they are available for use in a preformed shape.
This method also faces the obstacles facing all such long-term methods mentioned above.
For example, the use of collagen sponges has been proposed as an implant to promote cartilaginous tissue ingrowth, however, this method has not demonstrated good long-term success.
From a practical viewpoint, these methods are limited to those applications where the surrounding cartilage forms a natural cartilage capsule that is capable to acting as a mold to contain and shape the injected liquid composition until it sets.
A major disadvantage of using reactive polyurethane-based systems is that residue diisocyanate in the reactant becomes hydrolyzed in the presence of moisture, to diamine, which is both toxic and carcinogenic.
A disadvantage associated with such approach is inherent in the lack of any physical anchoring to the underlying bone.
A disadvantage and limitation of this method and this type of cartilage replacement device is that it requires cell ingrowth into the felted backing for biologic fixation of the device.
This type of soft tissue fixation is less desirable than fixation achieved by bone ingrowth or fixation directly with bone without a fibrous tissue interface.
Their device is composed of a layer of polymer attached to a porous felt like backing which may fatigue with motion and result in delamination.
Moreover, this type of failure may occur before biologic fixation occurs resulting in failure of the device.
In addition,their device is flexible to achieve conformation with the cartilage surface and may not allow adequate weight bearing.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Cartilage repair plug
  • Cartilage repair plug
  • Cartilage repair plug

Examples

Experimental program
Comparison scheme
Effect test

example 2

[0137] The cartilage plugs of the present invention may alternatively be used to anchor a flowable polymer to the subchondral bone. An implantation hole for the plug is drilled into the prepared bony base of the articular cartilage defect. Preparation of the bony base of the defect in this context entails the removal of loose tissue debris and exposure and / or surface modification of part or ll of the subchondral bone in the defect area by the surgeon. Using an inserter instrument that holds and drives the plug for implantantion, the base unit is inserted into the bone to a depth of approximately 50-60% of the plug height. The cylindrical devices-are seated such that approximately half of the barbs or ridges on the outer surface of the plug engage the bony walls of the tunnel and the remaining half of the plug's external ridges remain exposed. The inserter tool is removed and rearmed with another anchor plug as necessary and the process is repeated. Multiple anchor plugs may be place...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

No PUM Login to View More

Abstract

A cartilage plug, which is made from a biocompatible, artificial material, that is used to fill a void in natural cartilage that has been resected due to traumatic injury or chronic disease is disclosed. Alternatively, the plug may be relied upon to anchor a flowable polymer to subchondral bone. The plug is prefabricatable in any size, shape, and contour and may be utilized either singly or in a plurality to fill any size void for any application. The plug may be formed of a laminated structure to match the physiological requirements of the repair site. Additionally, ridges may be formed about the periphery of each plug to facilitate its anchoring to surrounding cartilage, bone and / or adjacent plugs. A procedure for resecting damaged or diseased cartilage and for implanting a replacement plug or plugs according to this invention, as well as a set of instruments for effecting the procedure, and a self-contained system for orthopaedic surgeons, which includes a variety of differently sized and shaped plugs, as well as a set of instruments for the procedure are also disclosed.

Description

[0001] This invention relates generally to the field of orthopedic surgery for the repair and replacement of damaged natural cartilage in a living mammal particularly human beings. More specifically, this invention relates to devices, methods, and instruments for the replacement of defective natural cartilage, where the defects are caused by traumatic injury which brings about sudden, acute damage to the cartilage, and / or by disease or the long term effects of unrepaired cartilage injuries, which over prolonged periods of time, cause a chronic deterioration of the cartilage. Still more specifically, the invention relates to an artificial device, made from a biocompatible material, in the form of a cartilage replacement plug, which is used individually or in multiples, to fill void cavities in cartilage created by the resection and removal of damaged or diseased portions of the natural cartilage or to anchor material that is used to fill such cavities; to a method for resecting damag...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
Patent Type & Authority Applications(United States)
IPC IPC(8): A61B17/16A61B19/00A61F2/00A61F2/28A61F2/30A61F2/38A61F2/46
CPCA61B17/1604A61B17/1635A61B17/1637A61B2019/306A61B2019/462A61F2/30756A61F2/30767A61F2/3094A61F2/3859A61F2/389A61F2/4618A61F2002/2839A61F2002/30004A61F2002/30011A61F2002/30016A61F2002/30067A61F2002/30112A61F2002/30113A61F2002/30125A61F2002/30138A61F2002/30143A61F2002/30146A61F2002/30151A61F2002/30153A61F2002/30154A61F2002/30169A61F2002/30205A61F2002/3021A61F2002/30224A61F2002/3023A61F2002/30273A61F2002/30276A61F2002/3028A61F2002/30289A61F2002/30329A61F2002/3038A61F2002/30448A61F2002/30454A61F2002/30457A61F2002/30502A61F2002/30583A61F2002/30616A61F2002/30759A61F2002/30772A61F2002/30795A61F2002/3085A61F2002/30879A61F2002/30892A61F2002/30894A61F2002/30904A61F2002/30957A61F2002/30971A61F2210/0085A61F2220/0025A61F2220/0033A61F2220/005A61F2220/0058A61F2230/0004A61F2230/0006A61F2230/0008A61F2230/0017A61F2230/0019A61F2230/0021A61F2230/0047A61F2230/0063A61F2230/0067A61F2230/0069A61F2230/0086A61F2230/0091A61F2240/001A61F2250/0014A61F2250/0019A61F2250/0023A61L2430/06A61F2002/4627A61F2002/30331A61F2002/30451A61F2002/305A61B2090/036A61B2090/062
Inventor SIMON, TIMOTHY M.ABERMAN, HAROLD M.JACKSON, DOUGLAS W.
Owner ABS
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products