Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

36 results about "Nanoconjugates" patented technology

Tailored macromolecules harboring covalently-bound biologically active modules that target specific tissues and cells. The active modules or functional groups can include drugs, prodrugs, antibodies, and oligonucleotides, which can act synergistically and be multitargeting.

Multifunction nanoconjugates for imaging applications and targeted treatment

The present invention relates to nanoconjugates. In particular, the present invention provides nanoconjugates for diagnostic (e.g., imaging), research, and clinical (e.g., targeted treatment) applications.
Owner:NORTHWESTERN UNIV

Stable Colloidal Suspensions Of Gold Nanoconjugates And The Method For Preparing The Same

In the present invention, a method for determining the stability threshold amount of a stabilizer component for gold nanoparticles to prevent their aggregation in any electrolyte solution, is disclosed. The method permits for very low levels of stabilizer components to be used while still permitting conjugation with other functional ligands. The method comprises preparation of stable gold nanoparticles conjugated with different amount of stabilizing agents in deionized water first and then testing the stability of colloidal suspension of these gold nanoparticles in the presence of the electrolyte solution by monitoring the absorbance at 520 nm. The invention also comprises a method for fabrication of nanoconjugates comprising gold nanoparticles and only the stabilizer components or comprising gold nanoparticles, stabilizer components and functional ligands, which are stable in the presence of electrolytes.
Owner:IMRA AMERICA

Targeted nanoparticle conjugate and method for co-delivery of sirna and drug

Provided are nanoparticle conjugates comprising a drug encapsulated in a gelatin nanoparticle the surface of which is functionalized with an antibody to which a siRNA is linked. Methods with the nanoconjugates for treating diseases are provided as well.
Owner:UNIVERSITY OF MISSOURI

Method of forming non-immunogenic hydrophobic protein nanoparticles and uses therefor

Methods are described for producing non-immunogenic nanoparticles from protein sources by controlling the pH in a nanoprecipitation process. The nanoparticles that are produced by the disclosed methods range in diameter size from about 100 ran to about 400 nm, with a preferred diameter size of from approximately 100 nm to approximately 300 nm, thereby rendering them non-immunogenic. The invention further discloses methods for producing nanoconjugates that are suitable for a variety of therapeutic, diagnostic and other uses.
Owner:SOUTH DAKOTA STATE UNIVERSITY

Poly(beta malic acid) with pendant leu-leu-leu tripeptide for effective cytoplasmic drug delivery

The invention relates to the use of Polycefin-LLL nanoconjugate as a means of cytoplasmic delivery of drugs. In one embodiment, the present invention provides a drug delivery molecule, comprising a polymerized carboxylic acid molecular scaffold covalently linked to L-leucylleucylleucine. In another embodiment, the Polycefin-LLL includes drug antisense morpholino oligos, targeting antibodies, and a pH-sensitive endosome escape unit. In addition, the drug could be siRNA, microRNA, and aptamer.
Owner:CEDARS SINAI MEDICAL CENT

Drug delivery of temozolomide for systemic based treatment of cancer

The present invention relates to methods of drug delivery for the treatment of a condition or disease, such as cancer. In one embodiment, the invention provides a method of preparing a multifunctional nanoconjugate of temozolomide (TMZ) by conjugating TMZ in its hydrazide form to a polymalic acid platform. In another embodiment, the polymalic acid platform is conjugated to a monoclonal antibody to transferrin receptor, a trileucine (LLL) moiety, and / or a polyethylene glycol (PEG) moiety. The present invention relates to methods of drug delivery for the treatment of a condition or disease, such as cancer. In one embodiment, the invention provides a method of preparing a multifunctional nanoconjugate of temozolomide (TMZ) by conjugating TMZ in its hydrazide form to a polymalic acid platform. In another embodiment, the polymalic acid platform is conjugated to a monoclonal antibody to transferrin receptor, a trileucine (LLL) moiety, and / or a polyethylene glycol (PEG) moiety.
Owner:CEDARS SINAI MEDICAL CENT

Oligonucleotide specific uptake of nanoconjugates

InactiveUS20170044544A1Increases cellular uptakePowder deliverySugar derivativesPhosphatePhosphoric acid
Disclosed are nanoparticles functionalized with an oligonucleotide and a domain, wherein the domain increases cellular uptake of the nanoparticles. The domain is a sequence of nucleobases or phosphate groups, such as a poly thymidine (polyT) sequence or a phosphate polymer (C3 residue) and may be located 5′ to the oligonucleotide 3′ to the oligonucleotide, within, or colinear with the oligonucleotide. Usage of the nanoparticles including modulating gene regulation is contemplated.
Owner:NORTHWESTERN UNIV

Poly(beta malic acid) with pendant leu-leu-leu tripeptide for effective cytoplasmic drug delivery

The invention relates to the use of Polycefin-LLL nanoconjugate as a means of cytoplasmic delivery of drugs. In one embodiment, the present invention provides a drug delivery molecule, comprising a polymerized carboxylic acid molecular scaffold covalently linked to L-leucylleucylleucine. In another embodiment, the Polycefin-LLL includes drug antisense morpholino oligos, targeting antibodies, and a pH-sensitive endosome escape unit. In addition, the drug could be siRNA, microRNA, and aptamer.
Owner:CEDARS SINAI MEDICAL CENT

Drug delivery of temozolomide for systemic based treatment of cancer

The present invention relates to methods of drug delivery for the treatment of a condition or disease, such as cancer. In one embodiment, the invention provides a method of preparing a multifunctional nanoconjugate of temozolomide (TMZ) by conjugating TMZ in its hydrazide form to a polymalic acid platform. In another embodiment, the polymalic acid platform is conjugated to a monoclonal antibody to transferrin receptor, a trileucine (LLL) moiety, and / or a polyethylene glycol (PEG) moiety. The present invention relates to methods of drug delivery for the treatment of a condition or disease, such as cancer. In one embodiment, the invention provides a method of preparing a multifunctional nanoconjugate of temozolomide (TMZ) by conjugating TMZ in its hydrazide form to a polymalic acid platform. In another embodiment, the polymalic acid platform is conjugated to a monoclonal antibody to transferrin receptor, a trileucine (LLL) moiety, and / or a polyethylene glycol (PEG) moiety.
Owner:CEDARS SINAI MEDICAL CENT

Nanoconjugates able to cross the blood-brain barrier

ActiveUS9889209B2High cellular uptake of nanoconjugatesNo toxicityPowder deliverySenses disorderMedicineBiomedical engineering
The present disclosure is directed to nanoconjugates that cross the blood-brain barrier and methods of their therapeutic use.
Owner:NORTHWESTERN UNIV

Tumor cell-specific responsive self-assembling drug nanoconjugate

Disclosed is a drug conjugate as a prodrug that is degraded by cathepsin B specifically expressed in tumor tissues to release doxorubicin. The drug conjugate can form self-assembled nanoparticles. In addition, the drug conjugate specifically responds to and is activated in tumor cells. Therefore, the use of the drug conjugate eliminates the incidence of side effects (for example, cell damage and apoptosis) during the course of cancer prevention or treatment.
Owner:KOREA INST OF SCI & TECH

Radiofrequency-induced synchronization of in situ hyperthermia and chemotherapy via magnetic-nanoconjugates

The present invention relates to a magnetic nanoparticle for tumor therapy, comprising: a magnetic core; a shell encapsulating a surface of the magnetic core, wherein the shell is made of a polymer with carboxylic groups; a poly-nucleotide chain connected to a surface of the shell; an anti-tumor drug connected to the poly-nucleotide chain, wherein the anti-tumor drug comprises at least one functional group, and each of the functional group is independently a pyrimidine group or a purine group; and an antibody connected to the shell, wherein the antibody identifies a target tumor. In addition, the present invention further provides a method for manufacturing the magnetic nanoparticles for tumor therapy and a pharmaceutical composition containing the magnetic nanoparticles. Accordingly, the magnetic nanoparticle for tumor therapy of the present invention can achieve effective treatment of tumor by synergistic effects between hyperthermia and targeted chemotherapy.
Owner:NAT CHENG KUNG UNIV

Poly(beta malic acid) with pendant leu-leu-leu tripeptide for effective cytoplasmic drug delivery

The invention relates to the use of Polycefin-LLL nanoconjugate as a means of cytoplasmic delivery of drugs. In one embodiment, the present invention provides a drug delivery molecule, comprising a polymerized carboxylic acid molecular scaffold covalently linked to L-leucylleucylleucine. In another embodiment, the Polycefin-LLL includes drug antisense morpholino oligos, targeting antibodies, and a pH-sensitive endosome escape unit. In addition, the drug could be siRNA, microRNA, and aptamer.
Owner:CEDARS SINAI MEDICAL CENT

Radiofrequency-induced synchronization of in situ hyperthermia and chemotherapy via magnetic-nanoconjugates

The present invention relates to a magnetic nanoparticle for tumor therapy, comprising: a magnetic core; a shell encapsulating a surface of the magnetic core, wherein the shell is made of a polymer with carboxylic groups; a poly-nucleotide chain connected to a surface of the shell; an anti-tumor drug connected to the poly-nucleotide chain, wherein the anti-tumor drug comprises at least one functional group, and each of the functional group is independently a pyrimidine group or a purine group; and an antibody connected to the shell, wherein the antibody identifies a target tumor. In addition, the present invention further provides a method for manufacturing the magnetic nanoparticles for tumor therapy and a pharmaceutical composition containing the magnetic nanoparticles. Accordingly, the magnetic nanoparticle for tumor therapy of the present invention can achieve effective treatment of tumor by synergistic effects between hyperthermia and targeted chemotherapy.
Owner:NAT CHENG KUNG UNIV

An immunoelectrochemical sensor for detecting β-amyloid oligomers and its preparation method

The invention relates to a mimic electrochemical immunosensor for detecting beta-amyloid protein (ABeta) oligomers and preparation method thereof and belongs to the technical field of biosensing and electroanalytical chemistry. gold nanoparticles jointly act with sulfhydryl-modified aptamer and thionine to form a stable nano conjugate; an antibody is fixed to the surface of a carboxylic graphene oxide modified electrode; after an ABeta oligomer is recognized, the oligomer is further connected with the aptamer modified gold nanoparticle conjugate, thus forming a sandwich mimic immunosensor; the ABeta oligomer is measured through thionine electrochemical signals. The immunosensor has high sensitivity, good specificity and high stability; compared with traditional immunosensors, the immunosensor features preparation simplicity and avoidance of the use of enzyme-labeled antibody reagents, is useful in the detection of ABeta oligomers in cerebrospinal fluid to promote early diagnosis of Alzheimer's disease and has clinical applicable value.
Owner:SHANGQIU NORMAL UNIVERSITY

Methods and related compositions for the treatment of cancer

Disclosed herein are compositions and nanoconjugates comprising a micelle construct; an antibody single chain fragment variable (scFv); a NF-kb inhibitor; and a topoisomerase II inhibitor. Further disclosed herein are methods of delivering a drug molecule to a tumor site of a subject comprising: attaching the drug molecule to a targeted micelle, wherein the targeted micelle comprises a micelle construct and an antibody single chain fragment variable (scFv); and delivering the drug molecule attached to the targeted micelle to the tumor site through intracellular delivery. Also disclosed hereinare methods of treating cancer or inhibiting tumor cell growth comprising administering to a subject in need thereof, a therapeutically effective dosage of a composition comprising a micelle construct, an antibody single chain fragment variable (scFv), a NF-kb inhibitor, and a topoisomerase II inhibitor.
Owner:IMMIX A DIV OF CARLTON INTL

Methods and related compositions for the treatment of cancer

Disclosed herein are compositions and nanoconjugates comprising a micelle construct; an antibody single chain fragment variable (scFv); a NF-kb inhibitor; and a topoisomerase II inhibitor. Further disclosed herein are methods of delivering a drug molecule to a tumor site of a subject comprising: attaching the drug molecule to a targeted micelle, wherein the targeted micelle comprises a micelle construct and an antibody single chain fragment variable (scFv); and delivering the drug molecule attached to the targeted micelle to the tumor site through intracellular delivery. Also disclosed herein are methods of treating cancer or inhibiting tumor cell growth comprising administering to a subject in need thereof, a therapeutically effective dosage of a composition comprising a micelle construct, an antibody single chain fragment variable (scFv), a NF-kb inhibitor, and a topoisomerase II inhibitor.
Owner:IMMIX A DIV OF CARLTON INTL

Multiple human antibody-nanoparticle conjugates and methods of formation

A nanoconjugate that includes multiple antibody agents bonded to a single nanoparticles via a linker to form a conjugate having either electrostatic or covalent bonding or that retains original properties of the multiple antibody types prior to formation of the conjugate. Preferred methods provide for multiple antibody types attached to a single nanoparticle via electrostatic attachment, covalent or mixed covalent and electrostatic attachment.
Owner:UNIVERSITY OF MISSOURI
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products