Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Method and apparatus for load-sensitive routing of long-lived packet flows

a packet-switched network and load-sensitive technology, applied in data switching networks, frequency-division multiplexes, instruments, etc., can solve the problems of large volume of traffic between particular points in the network, inability to select good paths for all source-destination pairs, and difficulty in ensuring the safety of packet-switched networks, so as to reduce the overhead of router forwarding, simplify the provisioning of network bandwidth, and reduce the overhead of certain control mechanisms

Inactive Publication Date: 2010-12-07
AT&T INTPROP I L P
View PDF14 Cites 3 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0008]The present invention exploits the variability of packet flow durations to avoid the undesirable effects of traditional approaches to dynamic routing. While most flows on the Internet are short-lived, the majority of the packets and bytes belong to long-lived flows, and this property persists across several levels of aggregation. Although this inherent variability of Internet traffic sometimes complicates the provisioning of network bandwidth and buffer resources, heavy-tailed flow-size distributions can be exploited to reduce the overheads of certain control mechanisms. Most notably, variability in flow duration has been the basis of several known techniques that reduce router forwarding overheads by establishing hardware switching paths for long-lived flows. These schemes classify arriving packets into flows and apply a trigger (e.g., arrival of some number of packets within a certain time interval) to detect long-lived flows. Then, the router dynamically establishes a shortcut connection that carries the remaining packets of the flow. The shortcut terminates if no packets arrive during a predetermined timeout period (e.g., 60 seconds). Several measurement-based studies have demonstrated that it is possible to limit the setup rate and the number of simultaneous shortcut connections, while forwarding a large fraction of packets on shortcuts.
[0009]The present invention builds on the implications of variability in flow durations on the stability of load-sensitive routing. In accordance with an embodiment of the present invention, long-lived flows of packets are routed dynamically while short-lived flows are forwarded on preprovisioned static paths. This hybrid approach can exploit flow-classification hardware at the edge of backbone networks and known techniques for flow-pinning, as well as basic insights from earlier work on QoS routing. This approach of separating short-lived and long-lived flows can dramatically improve the stability of dynamic routing. In accordance with another embodiment of the present invention, the detection of long-lived flows can be related to the timescale of link-state update messages, thereby allowing the present invention to react to fluctuations in network load without introducing route flapping. In accordance with another embodiment of the present invention, simple and robust rules for allocating network resources for short-lived and long-lived flows are disclosed, as well as techniques for sharing excess link capacity between the two traffic classes, The provisioning rules can be tailored to measurements of the distribution of flow sizes, and the triggering policy for detecting long-lived flows.
[0010]The present invention has the advantage of reducing the overhead of load-sensitive routing in a number of critical ways. It has the advantage of fewer signaling operations. Limiting load-sensitive routing to long-lived traffic substantially reduces the number of signaling operations for pinning routes, while still carrying the majority of packets and bytes on dynamically-selected paths.
[0011]The present invention also has the advantage of fewer link-state update messages. Dynamic routing of long-lived flows reduces the frequency of link-state update messages, both by reducing the number of flows that are dynamically routed, and by dramatically increasing the average flow duration.
[0012]The present invention also has the advantage of requiring fewer route computations. The slower changes in link-state information permit the routers to execute the path-selection algorithm less often without significantly degrading the quality of the routes. The routers can exploit efficient techniques for path precomputation rather than computing paths at flow arrival.
[0013]In addition, recent measurement studies suggest that long-lived flows have a less bursty arrival process than short-lived flows. Hence, focusing on long-lived flows should reduce the variability in the protocol and computational demands of dynamic routing, and lower the likelihood that a large number of flows route to the same links before new link-state metrics are available.

Problems solved by technology

Traffic engineering of large packet-switched networks, such as an Internet Protocol (IP) backbone network, has become a critical issue in recent years, due to the unparalleled growth of the Internet and the increasing demand for predictable communication performance.
However, the volume of traffic between particular points in the network can fluctuate widely over time, due to variations in user demand and changes in the network configuration, including failures or reconfigurations in the networks of other service providers.
Most backbone networks today still employ static routing (e.g., based on routing protocols such as OSPF and IS—IS), and, depending on the network topology and the path-selection algorithm, static routing often cannot select good paths for all source-destination pairs.
As such, they cannot exploit non-minimal routes, and typically have limited control of how traffic is distributed when a source-destination pair has multiple shortest-path routes.
Early attempts in the ARPANET to route based on dynamic link metrics resulted in dramatic fluctuations in link load over time.
Routing packets based on out-of-date link-state information caused “flapping”, where a large amount of traffic would travel to seemingly under-utilized links.
These links would become overloaded, causing future packets to route to a different set of links, which would then become overloaded.
Improvements in the definition of the link metrics reduced the likelihood of oscillations, but designing stable schemes for load-sensitive routing is fundamentally difficult in packet-based networks like the Internet.
Despite the potential benefits of dynamic routing, its deployment remains uncertain due largely to the significant bandwidth and processing requirements imposed by link-state update propagation, route computation, and signaling.
This introduces substantial bandwidth and processing overheads in large backbone networks.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Method and apparatus for load-sensitive routing of long-lived packet flows
  • Method and apparatus for load-sensitive routing of long-lived packet flows
  • Method and apparatus for load-sensitive routing of long-lived packet flows

Examples

Experimental program
Comparison scheme
Effect test

Embodiment Construction

[0020]FIG. 1 sets forth a simplified diagram of a packet-switched network suitable for illustrating preferred embodiments of the present invention. The network 110 comprises a number of linked routers 111 to 127. Individuals, e.g. 101, and commercial customers, e.g. 102, are able to access the network 110 via access routers, e.g. 111, 112, and 114. Gateway router 115 connects this particular domain with other network domains through an interexchange point (IXP) 150 using well-known interdomain protocols. Routing of packets inside the domain, in the prior art, would be handled by an intradomain protocol such as OSPF (Open Shortest Path First), a link-state protocol in which routers precompute routing tables based on link “cost” information received from neighboring routers. See, e.g. Moy, “OSPF Version 2”, IETF Network Working Group, RFC 2178, July 1997, which is incorporated by reference herein.

[0021]In accordance with a preferred embodiment of the present invention, flows of packet...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

No PUM Login to View More

Abstract

The present invention builds on the implications of variability in flow durations on the stability of load-sensitive routing. In accordance with an embodiment of the present invention, long-lived flows of packets are routed dynamically while short-lived flows are forwarded on preprovisioned static paths. This hybrid approach can exploit flow-classification hardware at the edge of backbone networks and known techniques for flow-pinning, as well as basic insights from earlier work on QoS routing. This approach of separating short-lived and long-lived flows can dramatically improve the stability of dynamic routing.

Description

CROSS REFERENCE TO RELATED APPLICATIONS[0001]This application claims priority to Provisional Application Serial No. 60 / 1 33,095, filed on May 7, 1999, the content of which is incorporated by reference herein.FIELD OF THE INVENTION[0002]The present invention relates generally to routing in a packet-switched network. More particularly, the present invention relates to dynamic load-sensitive routing for traffic engineering of packet-switched networks.BACKGROUND OF THE INVENTION[0003]Traffic engineering of large packet-switched networks, such as an Internet Protocol (IP) backbone network, has become a critical issue in recent years, due to the unparalleled growth of the Internet and the increasing demand for predictable communication performance. Ideally, an Internet service provider (OSP) optimizes the utilization of network resources by provisioning backbone routes based on the load between the edge routers. However, the volume of traffic between particular points in the network can f...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
IPC IPC(8): H04L12/28H04L12/56H04J3/16H04J3/22G08C15/00
CPCH04L45/00H04L45/28H04L45/302H04L45/38H04L45/50H04L45/22
Inventor REXFORD, JENNIFER LYNNSHAIKH, ANEES
Owner AT&T INTPROP I L P
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products