Eureka AIR delivers breakthrough ideas for toughest innovation challenges, trusted by R&D personnel around the world.

Preparation method of ozone heterogeneous oxidation solid catalyst

A heterogeneous oxidation, solid catalyst technology, applied in catalyst activation/preparation, physical/chemical process catalyst, metal/metal oxide/metal hydroxide catalyst, etc., can solve the problem of easy loss of catalytic activity and low catalyst adsorption. , poor anti-toxicity and other problems, to achieve the effect of improving anti-toxicity and catalytic activity, inhibiting precipitation, and strong adsorption

Inactive Publication Date: 2017-08-04
SICHUAN NORMAL UNIVERSITY
View PDF0 Cites 0 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Problems solved by technology

[0004] In view of the problems of low catalyst adsorption, poor anti-toxicity and easy loss of catalytic activity in the current preparation method of ozone heterogeneous oxidation solid catalyst, a multi-component porous carrier was developed to enhance the adsorption of the catalyst through pore expansion and surface activation. Rare earth metal organic compounds as precursors of catalytic active additives, common transition metal organic compounds and noble metal compounds as precursors of catalytic active centers and multi-component porous carriers through hydrothermal reaction and high temperature calcination to prepare ozone heterogeneous oxidation containing multiple metals The preparation method of solid catalyst to improve the anti-toxicity and catalytic activity of the catalyst is characterized in that component A and deionized water are added into a sealable reactor and stirred to prepare an aqueous solution, and the weight concentration of component A is controlled to be 2% to 6%. After the preparation is completed, add component B under stirring, raise the temperature to 35°C-50°C, continue to stir for 3h-6h, filter, and dry the reaction product at 102°C-106°C to obtain a modified carrier for pore expansion; pore expansion Put the modified carrier into the ultrasonic reactor, add the aqueous solution prepared by C component and deionized water, the weight concentration of C component is 3%~8%, stir and mix evenly, control the ultrasonic power density to 0.3~0.8W / m 3 , frequency 20kHz ~ 30kHz, 40 ℃ ~ 55 ℃, ultrasonic vibration 2h ~ 5h, the ultrasonic surface activation carrier mixture is obtained; the ultrasonic surface activation carrier mixture is transferred to the hydrothermal reaction kettle, and then add D component and deionized water to prepare The aqueous solution, the weight concentration of D component is 40% ~ 55%, by weight, the weight ratio of D component deionized aqueous solution: ultrasonic surface activation carrier mixture = 1: (1.5 ~ 2), control temperature 120 ℃ ~ 180°C, the hydrothermal reaction time is 8h~16h, and then dried to obtain fine particles; the fine particles are burned in a muffle furnace at 600°C~950°C for 3h~8h to obtain a solid catalyst for ozone heterogeneous oxidation

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Examples

Experimental program
Comparison scheme
Effect test

Embodiment 1

[0007] Embodiment 1: 1.35g lithium hypochlorite, 1.65g bis(acetylacetonate) beryllium, 140ml deionized water, join volume and be that in the sealable reactor of 500ml, stir and mix evenly, the weight concentration of this aqueous solution is 2.1%, times Lithium chlorate: bis(acetylacetonate) beryllium weight ratio=1:1.2; add deionized water to wash to neutral, dry at 103°C to remove moisture, and then sieve 2.75g attapulgite of -200 mesh to +400 mesh standard sieve Weight of soil, 3.75g diopside, 4.75g talc, 5.75g sodaite, 6.75g brucite, 7.75g serpentine, lithium hypochlorite and bis(acetylacetonate)beryllium (3g): Porous material Weight (31.5g) = 1:10.5, heat up to 36°C, continue to stir for 3.2h, filter, dry at 103°C and obtain 31g of pore-enlarging modified carrier; in a 500ml ultrasonic reactor, put the pore-enlarging modified carrier 31g, then add 3.25g trioctylmethylammonium chloride and dissolve in 100ml deionized water aqueous solution, the weight concentration of this...

Embodiment 2

[0008] Example 2: 0.24g lithium hypochlorite, 0.36g bis(acetylacetonate) beryllium, 10ml deionized water, adding deionized water to a 100ml airtight reactor, washing to neutrality, drying at 103°C to remove moisture Mix well, the weight concentration of this aqueous solution is 5.7%, lithium hypochlorite: the ratio of weight of bis(acetylacetonate) beryllium=1:1.5; add the 1.45g attapulgite of washing and sieving -200 mesh~+400 mesh standard sieve Weight of soil, 1.65g diopside, 1.85g talc, 2.05g sodaite, 2.25g brucite, 2.45g serpentine, lithium hypochlorite and bis(acetylacetonate)beryllium (0.6g): porous material The weight (11.7g)=1:19.5, heat up to 48°C, continue to stir and react for 5.8h, filter, and dry at 105°C to obtain 11.5g of pore-enlarging modified carrier; in a 100ml ultrasonic reactor, put the pore-enlarging modified Carrier 11.5g, then add 2.2g trioctylmethylammonium chloride and be dissolved in the aqueous solution of 26ml deionized water, the weight concentra...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

No PUM Login to View More

Abstract

The invention relates to a preparation method of an ozone heterogeneous oxidation solid catalyst, belonging to the technical field of environment-friendly and chemical catalysts. The preparation method comprises the following steps: by taking attapulgite, diopside, steatite, boron tribromide, brucite and serpentinite porous materials as carriers, performing pore expansion and modification to the carriers through lithium hypochlorite and beryllium bis(acetylacetonate), adding a surfactant methyl trioctyl ammonium chloride and performing surface activation treatment under ultrasonic wave effect, then leading the ultrasonically surface-activated carriers to have hydrothermal reaction with a complex mineralizer (borax and potassium sulfate), catalytic activity assistant precursors, namely praseodymium(III) tris[3-(trifluoromethylhydroxymethylene)-D-camphorate], promethium tricyclopentadienide, tris(2,2,6,6-tetramethyl-3,5-heptanedionato)gadolinium(III), and lutetium carbonate hydrate rare earth metal organic compound, and catalytic active site component precursors, namely common transitional metal organic compound ferrous fumarate, nickel citrate and tungsten catechol ethylenediamine complex and precious metal compound dichlorodiamminoplatinum in a hydrothermal reactor under the action of an emulsifier dimethylaminoacrylate laurate ammonium chloroacetate, drying reactive products to remove moisture, and firing in a muffle furnace at certain temperature, to obtain the ozone heterogeneous oxidation solid catalyst.

Description

technical field [0001] The invention relates to a preparation method of a solid catalyst for ozone heterogeneous oxidation, which belongs to the technical fields of environmental protection and chemical catalysts. Background technique [0002] Ozone oxidation technology utilizes the strong oxidation ability of ozone, which can oxidize and decompose many organic pollutants, and is widely used in wastewater treatment. Ozone catalytic oxidation technology is divided into ozone homogeneous catalytic oxidation and ozone heterogeneous catalytic oxidation. Ozone homogeneous catalytic oxidation has catalysts that are difficult to separate, recycle and reuse, and the low utilization rate of ozone leads to high water treatment operation costs. Ozone heterogeneous catalytic oxidation technology has the advantages of easy separation and recovery of catalysts and reusable use, high ozone utilization rate, and high removal rate of organic pollutants, which reduces water treatment. The ad...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
IPC IPC(8): B01J23/89B01J20/20B01J20/30C02F1/78
CPCB01J20/041B01J20/043B01J20/06B01J20/10B01J20/12B01J20/20C02F1/725C02F1/78B01J23/8993B01J37/084B01J37/10C02F2305/02B01J2220/42B01J2220/4806B01J2220/4812B01J35/60
Inventor 朱明刘阳宋佳柠
Owner SICHUAN NORMAL UNIVERSITY
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Eureka Blog
Learn More
PatSnap group products