Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

585results about "Hologram recording material" patented technology

Electrically switchable polymer-dispersed liquid crystal materials including switchable optical couplers and reconfigurable optical interconnects

A new photopolymerizable material allows single-step, fast recording of volume holograms with properties that can be electrically controlled. Polymer-dispersed liquid crystals (PDLCs) in accordance with the invention preferably comprise a homogeneous mixture of a nematic liquid crystal and a multifunctional pentaacrylate monomer in combination with photoinitiator, coinitiator and cross-linking agent. Optionally, a surfactant such as octancic acid may also be added. The PDLC material is exposed to coherent light to produce an interference pattern inside the material. Photopolymerization of the new PDLC material produces a hologram of clearly separated liquid crystal domains and cured polymer domains. Volume transmission gratings made with the new PDLC material can be electrically switched between nearly 100% diffraction efficiency and nearly 0% diffraction efficiency. By increasing the frequency of the switching voltage, switching voltages in the range of 50 Vrms can be achieved. The optional use of a surfactant allows low switching voltages at lower frequencies than without a surfactant. In an alternative embodiment, a PDLC material in accordance with the invention can be utilized to form reflection gratings, including switchable reflection gratings. In still further embodiments, a PDLC material in accordance with the invention can be used to form switchable subwavelength gratings. By further processing, static transmission, reflection, and subwavelength PDLC materials can be formed. In addition, PDLC materials in accordance with the present invention can be used to form switchable slanted transmission gratings suitable for switchable optical coupling and reconfigurable optical interconnects.
Owner:LEIDOS

Hologram

A hologram has a hologram element 3 containing a photopolymer and a cover film 22 and cover plate 21 which cover its surfaces. An adhesive 1 is used for bonding the cover film to the hologram element and the cover plate to the hologram element. The hologram has excellent humidity resistance, chemical resistance, solvent resistance and heat resistance, prevents coloration, can maintain its holographic properties and allows easy repositioning of the hologram element.
Owner:DENSO CORP

Holographic recording medium and holographic recording/reproducing apparatus using the same

A holographic recording medium exhibiting a high recording sensitivity without execution of reduction treatment. A system records information on the holographic recording medium by using a gating light within a wavelength band causing less optical damage to the holographic recording medium. The holographic recording medium includes a single crystal of lithium niobate (LiNbO3) or lithium tantalate (LiTaO3) containing Mn as a dopant.
Owner:NAT INST FOR MATERIALS SCI +1

Holographic sensors and their production

A method for the production of a holographic sensor wherein the holographic recording material forming the sensitive element is a polymer matrix, which comprises diffusing into the matrix one or more soluble salts that undergo reaction in situ to form an insoluble sensitive precipitate; and recording a holographic image. This method allows the production of a holographic sensor wherein the holographic recording material forming the sensitive element is an insoluble polymer film.
Owner:SMART HOLOGRAMS

Photopolymer formulation for producing visible holograms

The present invention relates to a photopolymer formulation containing chemically crosslinked matrix polymers, writing monomers and a photoinitiator system, wherein the photoinitiator system contains a HABI, a dye attuned to the HABI and having an absorption maximum in the range of 400-800 nm and a hydrogen donor. The present invention further relates to a process for producing exposed holographic media with the above photopolymer formulation.
Owner:BAYER MATERIALSCIENCE AG

Novel optical storage materials based on narrowband optical properties

Holographic storage media including a substrate and a dye material capable of undergoing a photo-induced change are disclosed. Data may be written into the holographic storage media using light of one wavelength and read using light of a different wavelength.
Owner:GENERAL ELECTRIC CO

Fabrication of high efficiency, high quality, large area diffractive waveplates and arrays

The objective of the present invention is providing a method for fabricating high quality diffractive waveplates and their arrays that exhibit high diffraction efficiency over large area, the method being capable of inexpensive large volume production. The method uses a polarization converter for converting the polarization of generally non-monochromatic and partially coherent input light beam into a pattern of periodic spatial modulation at the output of said polarization converter. A substrate carrying a photoalignment layer is exposed to said polarization modulation pattern and is coated subsequently with a liquid crystalline material. The high quality diffractive waveplates of the present invention are obtained when the exposure time of said photoalignment layer exceeds by generally an order of magnitude the time period that would be sufficient for producing homogeneous orientation of liquid crystalline materials brought in contact with said photoalignment layer. Compared to holographic techniques, the method is robust with respect to mechanical noises, ambient conditions, and allows inexpensive production via printing while also allowing to double the spatial frequency of optical axis modulation of diffractive waveplates.
Owner:BEAM ENG FOR ADVANCED MEASUREMENTS

System and method for encoding and decoding an image or document and document encoded thereby

Holographic and diffractive security devices and documents carrying security devices as well as system, apparatus, and method for making and using security devices. Security devices provide at least one type of security feature in form of secret, hidden, or covert security feature, not visible to a normal unaided human eye. Covert security features may be any graphic or symbolic representation. One or multiple security features may be provided on any single security device in any combination. Covert feature is revealed either when a decoder device is used with the security device, or when the security device is oriented and viewed in predetermined manner. Embodiments may provide a second overt or non-covert security device in the form of a diffractive or holographic image or graphic that is visible to the unaided eye without use of any decoder or special viewing conditions.
Owner:PACIFIC HOLOGRAPHICS

Switchable polymer-dispersed liquid crystal optical elements

Transmission and reflection type holograms may be formed utilizing a novel polymer-dispersed liquid crystal (PDLC) material and its unique switching characteristics to form optical elements. Applications for these switchable holograms include communications switches and switchable transmission, and reflection red, green, and blue lenses. The PDLC material of the present invention offers all of the features of holographic photopolymers with the added advantage that the hologram can be switched on and off with the application of an electric field. The material is a mixture of a polymerizable monomer and liquid crystal, along with other ingredients, including a photoinitiator dye. Upon irradiation, the liquid crystal separates as a distinct phase of nanometer-size droplets aligned in periodic channels forming the hologram. The material is called a holographic polymer-dispersed liquid crystal (H-PDLC).
Owner:LEIDOS

Switchable polymer-dispersed liquid crystal optical elements

Transmission and reflection type holograms may be formed utilizing a novel polymer-dispersed liquid crystal (PDLC) material and its unique switching characteristics to form optical elements. Applications for these switchable holograms include communications switches and switchable transmission, and reflection red, green, and blue lenses. The PDLC material of the present invention offers all of the features of holographic photopolymers with the added advantage that the hologram can be switched on and off with the application of an electric field. The material is a mixture of a polymerizable monomer and liquid crystal, along with other ingredients, including a photoinitiator dye. Upon irradiation, the liquid crystal separates as a distinct phase of nanometer-size droplets aligned in periodic channels forming the hologram. The material is called a holographic polymer-dispersed liquid crystal (H-PDLC).
Owner:LEIDOS INC

Systems, articles, and methods for integrating holographic optical elements with eyeglass lenses

Systems, articles, and methods that integrate photopolymer film with eyeglass lenses are described. One or more hologram(s) may be recorded into / onto the photopolymer film to enable the lens to be used as a transparent holographic combiner in a wearable heads-up display employing an image source, such as a microdisplay or a scanning laser projector. The methods of integrating photopolymer film with eyeglass lenses include: positioning photopolymer film in a lens mold and casting the lens around the photopolymer film; sandwiching photopolymer film in between two portions of a lens; applying photopolymer film to a concave surface of a lens; and / or affixing a planar carrier (with photopolymer film thereon) to two points across a length of a concave surface of a lens. Respective lenses manufactured / adapted by each of these processes are also described.
Owner:THALMIC LABS +1

Electrically switchable polymer-dispersed liquid crystal materials

A method for preparing electro-optical polymer-liquid crystal photonic crystals, comprising: disposing between at least two optically transparent electrode plates, a polymer-dispersed liquid crystal material that comprises, before exposure:(a) a polymerizable monomer comprising at least one acrylate;(b) a liquid crystal;(c) a chain-extending monomer;(d) a coinitiator;(e) a photoinitiator; and(f) a long chain aliphatic acid;and exposing this polymer-dispersed liquid crystal material to light in an interference pattern.
Owner:LEIDOS

Transmission type laminated hologram optical element and image display device comprising this optical element

The present invention is directed to a transmission type laminated hologram optical element constituting an image display apparatus, wherein plural transmission type hologram optical elements (13), (14), (15) where diffraction acceptance incident angles are different from each other are laminated. The respective transmission type hologram optical elements are adapted so that outgoing angles with respect to center incident angles of respective diffraction acceptance incident angles at an arbitrary wavelength of the visible region are different from each other, whereby a diffraction acceptance angle of incident light can be broadened, light utilization efficiency is permitted to be high, and distance with respect to color pixels of the spatial light modulation element can be optimally set from viewpoints of light utilization efficiency.
Owner:SONY CORP

Auto Stereoscopic 3D Telepresence Using Integral Holography

A holographic direct-view display system uses holographic integral imaging techniques that is an auto stereoscopic way to reproduce parallax and occlusion. The display is not resolution limited and is scalable to display life size images if desired. The system can be used to transmit 3D depictions of a scene at video and sub-video rates as well as other information, such as images of documents or computer generated images. The images may be captured, transmitted and displayed in real-time (or near real-time) for telepresence or stored for time-shifted display. The system combines integral holography, a pulsed laser to record the hologram at high speed and a dynamic refreshable holographic material such as a photorefractive polymer as a recording media. The system uses techniques to write, read and erase the updateable hologram that allow the holographic material, hence direct-view display to remain stationary throughout each of the processes for continuous presentation of the hologram to the audience. The system may write, read and erase at the same time and continuously to increase throughput. This system may also use additional novel techniques to improve brightness, efficiently implement a full-parallax display and to implement a full-color display in a transmission geometry.
Owner:TIPD +1

Apparatus for copying a hologram

A holographic recording apparatus having a source of illumination, a master hologram containing at least one hologram lamina overlaying, a copy substrate containing a holographic recording medium, and a voltage generator for applied a voltage across at least one of the master hologram and the copy substrate. The master hologram diffracts the illumination light into zero order light and diffracted light which interfere in the copy substrate to form a copy of the master hologram. The source of illumination is applied for a predefined exposure time during which the voltage varies the refractive index modulation of at least one of the master hologram and the copy hologram.
Owner:DIGILENS

Dynamic Liquid Crystal Gel Holograms

A dynamic hologram is formed in anisotropic liquid crystal (LC) gel materials. By applying an electric field, the orientation of part of the liquid crystals can be altered and the hologram can be turned on and off. Using LC gels allows for holographic elements with no diffraction in the voltage off state so that the hologram appears only during application of an electric field. Also, the anisotropic LC gels maintain polarization dependence. The dynamic holograms are suitable in e.g. dynamic holographic optical components whereby an optical function can be included / excluded in a beam path without introducing or removing elements.
Owner:KONINKLIJKE PHILIPS ELECTRONICS NV

Hologram element, production method thereof, and optical header

A method of producing a hologram element is disclosed that is able to prevent spread of a polymerization reaction and light leakage during exposure with interference light, and improve productivity in mass production. The hologram element is for transmitting, reflecting, diffracting, or scattering incident light, and includes a pair of substrates, an isolation member between the substrates that forms an isolated region, and a photo-sensitive recording material sealed in the isolated region. The hologram element includes a periodic structure formed by exposing the recording material to interference light. The interference light is generated by two or more light beams, or by using a master hologram. The recording material is formed from a composite material including a polymerized polymer or a polymerized liquid crystal. The periodic structure is formed by exposing the recording material to the interference light to induce the polymerization reaction and phase separation in the composite material.
Owner:RICOH KK

Switchable volume hologram materials and devices

A new photopolymerizable material allows single-step, fast recording of volume holograms with properties that can be electrically controlled. Polymer-dispersed liquid crystals (PDLCs) in accordance with the invention preferably comprise a homogeneous mixture of a nematic liquid crystal and a multifunctional pentaacrylate monomer, in combination with photoinitiator, coinitiator and cross-linking agent. Optionally, a surfactant such as octanoic acid may also be added. The PDLC material is exposed to coherent light to produce an interference pattern inside the material. Photopolymerization of the new PDLC material produces a hologram of clearly separated liquid crystal domains and cured polymer domains. Volume transmission gratings made with the new PDLC material can be electrically switched between nearly 100% diffraction efficiency and nearly 0% diffraction efficiency. By increasing the frequency of the switching voltage, switching voltages in the range of 50 Vrms can be achieved. The optional use of surfactant allows low switching voltages at lower frequencies than without surfactant. In an alternative embodiment, a PDLC material in accordance with the invention can be utilized to form reflection gratings, including switchable reflection gratings. In still further embodiments, a PDLC material in accordance with the invention can be used to form switchable subwavelength gratings. By further processing, static transmission reflection, and subwavelength PDLC materials can be formed.
Owner:LEIDOS

Iteration of optical time reversal by ultrasonic encoding in biological tissue

Iterating an optical phase conjugation of ultrasonically-modulated diffuse light emitted by a scattering medium includes illuminating the scattering medium with a light beam from a coherent light source, modulating the diffuse light transmitted through the scattering medium with an ultrasonic wave focused on a region of interest within the scattering medium, fixing a hologram, retro-reflectively illuminating the scattering medium using a phase-conjugated copy of the diffuse light that was ultrasonically modulated, moving the ultrasonic focus, and iterating until light is focused on the final target.
Owner:CALIFORNIA INST OF TECH

Counterfeit-proof volume hologram multilayer structure, and counterfeit-proof volume hologram seal

The present invention relates to a counterfeit-proof volume hologram multilayer structure capable of securely preventing a counterfeiter from replicating a volume hologram recorded therein. The multilayer structure comprises a transparent surface protective layer, a volume hologram layer, and an adhesive layer which are sequentially laminated and is characterized in that particles having particle diameter of 350 nm or more are dispersed in at least one of the transparent surface protective layer, the volume hologram layer, and the adhesive layer and that the refractive index ratio (nF / nB) is set to be not less than 1.05 or not greater than 0.95, wherein nF is the refractive index of the particles and nB is the refractive index of the medium in which the particles are dispersed, or characterized in that at least either the refractive index ratio (nP / nH) between the transparent surface protective layer and the volume hologram layer or the refractive index ratio (nH / nA) between the volume hologram layer and the adhesive layer is set to be not less than 1.08, wherein nP is the refractive index of the transparent surface protective layer, nH is the refractive index of the volume hologram layer, and nA is the refractive index of the adhesive layer.
Owner:DAI NIPPON PRINTING CO LTD

Photosensitive composition for volume hologram recording and photosensitive medium for volume hologram recording

A photosensitive composition and A photosensitive medium for volume hologram recording comprises a photopolymerization reactive compound (a monomer) and any one of the following binder: (a) an organic-inorganic hybrid polymer obtainable by copolymerizing an organometallic compound of the formula 1 "R1m M1 (OR2)" and an ethylenic monomer and / or its hydrolyzed polycondensate; (b) an organic-inorganic hybrid polymer obtainable by copolymerizing an organometallic compound of the formula 3 "R4m Si (OR5)n" and an ethylenic monomer and / or its hydrolyzed polycondensate; and (c) a binder resin bonded to a metal or a combination use of a binder resin containing a hydroxyl group and / or carboxyl group and a metal chelate compound.
Owner:DAI NIPPON PRINTING CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Eureka Blog
Learn More
PatSnap group products