Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

64results about "Avoid excessive blade deflection" patented technology

Wind turbine blade deflection control system

A wind turbine with a sensor that measures the out-of-plane deflection of the blades and a controller that uses the signal from the sensor to determine the risk of a tower strike. The controller takes any necessary action to prevent a tower strike when it determines that the risk of a strike is high. The sensor can include strain gages or accelerometers mounted on the blades or it can include a fixed sensor mounted on the side of the tower to measure tower clearance as the blade passes by. The control action taken can include pitching blades, yawing the nacelle, or stopping the turbine. The controller is preferably a fuzzy logic controller.
Owner:BOSCHE JOHN VANDEN

Cyclic Pitch Control System for Wind Turbine Blades

In a wind turbine, an open loop control algorithm for incrementally or positively adjusting the pitch angles of individual rotor blades may be used to increase spacing between the base of the turbine tower and an approaching blade tip. As each rotating blade passes in front of the tower base, a minimum clearance distance may be assured to avoid blade tip strikes of the base. In accordance with at least one embodiment of the control algorithm, as each blade approaches the tower base, it may be feathered to reduce its power loading, and to facilitate increased clearance beyond the normal unloading or feathering produced by the so-called tower shadow effect. To offset resultant loss of torque, the remaining blades may be correspondingly pitched toward power, i.e. into the wind, to balance and / or smooth out the overall rotor torque curve, and thus to avoid torque ripples.
Owner:CLIPPER WINDPOWER INC

System for detecting proximity between a wind turbine blade and a tower wall

A sensor system monitors deflection of turbine blades of a wind turbine. The system includes a first component configured on the turbine blades. A second component is configured on the tower at a height so as to detect the presence of the first component as the blades rotate past the tower. The second component generates a corresponding measurable parameter or value that is indicative of distance between the blades and tower. The second component is disposed substantially completely around the circumference of the tower so as to detect the first components at any rotational position of the turbine nacelle relative to the tower.
Owner:GENERAL ELECTRIC CO

Wind turbine blade vibration detection and radar calibration

ActiveUS20150159632A1Reduces manufacturing and maintenance costEasy to replacePropellersWind motor controlTurbine bladeTower
A wind turbine (1) is provided, having a wind turbine tower (2) and at least one rotatable blade (5), and further comprising a system for measuring rotor blade vibration of said wind turbine. The system comprises at least one Doppler radar unit (7) operatively configured to emit and receive radar signals, the radar unit being mounted on the wind turbine tower at a position above the lowest position of the at least one blade, the radar unit being positioned so as to measure reflections of an emitted radar signal from the turbine blade. A processing unit is configured to receive measurement data from the radar unit and to determine, by analysis of Doppler shift in received radar signals relative to transmitted signals due to movement of the blade towards or away from the turbine tower, the velocity of the blade in the direction towards or away from the turbine tower. Using a radar unit to measure blade velocity allows a determination to be made of the vibrations occurring in the blade without needing an internal sensor in the blade. This reduces manufacturing and maintenance costs of the blades since sensors in the blades will not need to be replaced, and sensors positioned on the tower are easier to replace in the field.
Owner:VESTAS WIND SYST AS

System and method for monitoring and controlling wind turbine blade deflection

A system and method for monitoring and controlling the deflection of rotor blades of a wind turbine so as to prevent tower strikes is disclosed. The method includes operating the wind turbine at standard pitch angle settings. Another step includes monitoring a loading condition of the wind turbine over a predetermined time period. A further step includes tracking a number of wind condition deviations of a certain magnitude occurring during a predetermined time period. The method also include altering one or more of the standard pitch settings of the rotor blades in response to the number of wind condition deviations exceeding a wind deviation threshold and / or the loading condition exceeding a loading threshold as an exceedance indicates an increased probability of rotor blade deflection. The method further includes performing one or more additional corrective actions so as to reduce the probability of a rotor blade tower strike.
Owner:GENERAL ELECTRIC CO

Individual pitch control system with controller policy and pitch control method

The invention discloses an individual pitch control system with a controller policy and a pitch control method, and belongs to the technical field of wind power industry. The individual pitch control system comprises a wind driven generator unit main control controller, a variable pitch controller, three sets of servo drives corresponding to blades, a spare power supply, a pitch control motor, an encoder and a limiting switch; the variable pitch controller is respectively communicated with the wind driven generator unit main control controller and the three servo drives; each servo drive is respectively connected with the pitch control motor, the motor encoder, the spare power supply and the limiting switch; the motor encoder is mounted at the tail end of the pitch control motor; and the angle encoder is engaged and linked with blade bearing inner teeth through measuring gears. The individual pitch control system can realize individual pitch control function through the variable pitch controller, realizes safety protection for fault diagnosis, state monitoring, lightning protection and battery management, can properly reduce the fatigue load of fan blades, prolongs the unit service life, is simple and reliable in control, has no need to additionally provide excessive hardware, is lower in cost, and is higher in safety.
Owner:CHINA CREATIVE WIND ENERGY +3

A system and method for identifying the likelihood of a tower strike in a wind turbine

A system for identifying the likelihood of a wind turbine rotor blade striking a wind turbine tower comprises a device for sensing bending of a wind turbine rotor blade and a device for sensing bending of a wind turbine tower. In a preferred embodiment Long Period Grating (LPG) sensors are used to measure bending of the tower. Preferably a plurality of LPG sensors is provided along the length of the blade. In one embodiment at least one of the LPG sensors comprises two sensing elements arranged to sense in perpendicular directions. In another embodiment a plurality of LPG sensors are provided each on different sides of the wind turbine tower. A processor uses the sensed blade and tower bending to determine whether the distance between the blade and the tower will be below a predetermined minimum value. If the distance is determined to be below the predetermined minimum value a controller may be used to adjust a wind turbine variable to reduce loading on the blade and thereby reduce the likelihood of a tower strike.
Owner:VESTAS WIND SYST AS

Detection of deformation of a wind turbine blade

An arrangement for detecting bending deflection of a wind turbine blade is provided. The arrangement for the wind turbine includes a radio transmitter and a linear antenna array assigned to the radio transmitter. The radio transmitter is mounted on the blade tip and emits a signal. The antenna array is mounted on the rotor of the wind turbine in a co-rotating manner and receives the signal. On the basis of the transit times of the signal from the rotor to the individual antennas of the array, the position of the radio transmitter relative to the array is determined. In the event of blade deflection, for example when a high wind load is present, the relative position changes which is detected by the arrangement.
Owner:SIEMENS AG
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products