Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

144 results about "Mitral regurgitations" patented technology

Blood flows backward because the mitral valve closes improperly

Automated annular plication for mitral valve repair

A method for reducing mitral regurgitation comprising: providing a plication assembly comprising a first anchoring element, a second anchoring element, and a linkage construct connecting the first anchoring element to the second anchoring element; positioning the first anchoring element in the coronary sinus adjacent to the mitral annulus, and positioning the second anchoring element in another area of the mitral annulus so that the linkage construct extends across the opening of the mitral valve and holds the mitral valve in a reconfigured configuration so as to reduce mitral regurgitation. An apparatus for reducing mitral regurgitation comprising: a plication assembly comprising a first anchoring element, a second anchoring element, and a linkage construct connecting the first anchoring element to the second anchoring element; and a catheter adapted to deliver the first anchoring element to the coronary sinus.
Owner:VIACOR INC

Medical device, kit and method for constricting tissue or a bodily orifice, for example, a mitral valve

A device, kit and method may include or employ an implantable device (e.g., annuloplasty implant) and a tool operable to implant such. The implantable device is positionable in a cavity of a bodily organ (e.g., a heart) and operable to constrict a bodily orifice (e.g., a mitral valve). The tissue anchors may be guided into precise position by an intravascularly or percutaneously deployed anchor guide frame of the tool and embedded in an annulus of the orifice. Constriction of the orifice may be accomplished via a variety of structures, for example by cinching a flexible cable or via a anchored annuloplasty ring, the cable or ring attached to the tissue anchors. The annuloplasty ring may be delivered in an unanchored, generally elongated configuration, and implanted in an anchored generally arch, arcuate or annular configuration. Such may approximate the septal and lateral (clinically referred to as anterior and posterior) annulus of the mitral valve, to move the posterior leaflet anteriorly and the anterior leaflet posteriorly, thereby improving leaflet coaptation to eliminate mitral regurgitation.
Owner:KARDIUM

Device for treating mitral valve regurgitation

A system for treating mitral valve regurgitation comprises tensioning device that can be deployed using a delivery catheter. The device includes tension member linking a proximal anchor and distal anchor. The device is constructed from a material having suitable elastic properties such that the device applies a constant tension force between the anchors, while stretching or flexing in response to a heartbeat when positioned across a chamber of a heart. The anchors may include a plurality of arms. In some embodiments, the arms may also flex in response to a heart beat. When positioned across the left ventricle of a heart, the device can reduce the lateral distance between the walls of the ventricle and thus allow better coaption of the mitral valve leaflets thereby reducing mitral regurgitation.
Owner:MEDTRONIC VASCULAR INC

Adjustable endolumenal mitral valve ring

ActiveUS9180005B1Mitral regurgitation has been reduced and eliminatedStentsGuide needlesVentricular contractionMitral valve leaflet
Excessive dilation of the annulus of a mitral valve may lead to regurgitation of blood during ventricular contraction. This regurgitation may lead to a reduction in cardiac output. Disclosed are systems and methods relating to an implant configured for reshaping a mitral valve. The implant comprises a plurality of struts with anchors for tissue engagement. The implant is compressible to a first, reduced diameter for transluminal navigation and delivery to the left atrium of a heart. The implant may then expand to a second, enlarged diameter to embed its anchors to the tissue surrounding and / or including the mitral valve. The implant may then contract to a third, intermediate diameter, pulling the tissue radially inwardly, thereby reducing the mitral valve and lessening any of the associated symptoms including mitral regurgitation.
Owner:BOSTON SCI SCIMED INC

Prevention of myocardial infarction induced ventricular expansion and remodeling

A method for direct therapeutic treatment of myocardial tissue in a localized region of a heart having a pathological condition. The method includes identifying a target region of the myocardium and applying material directly and substantially only to at least a portion of the myocardial tissue of the target region. The material applied results in a physically modification the mechanical properties, including stiffness, of said tissue. Various devices and modes of practicing the method are disclosed for stiffening, restraining and constraining myocardial tissue for the treatment of conditions including myocardial infarction or mitral valve regurgitation.
Owner:MYOMEND

Mitral valve regurgitation treatment device and method

A method of treating regurgitation of a mitral valve in a patient's heart. The method includes the steps of: delivering a tissue shaping device to the coronary sinus; and deploying the tissue shaping device to reduce mitral valve regurgitation, the deploying step comprising applying a force through the coronary sinus wall toward the mitral valve solely proximal to a crossover point where a coronary artery passes between a coronary sinus and the mitral valve. The invention is also a set of devices for use in treating mitral valve regurgitation. The set includes a plurality of tissue shaping devices having different lengths, each of the tissue shaping devices being configured to be deliverable to a coronary sinus of a patient within a catheter having an outer diameter no greater than ten french.
Owner:CARDIAC DIMENSIONS

Method and apparatus for percutaneous reduction of anterior-posterior diameter of mitral valve

A method and apparatus for treating mitral regurgitation by approximating the septal and lateral (clinically referred to as anterior and posterior) annulus of the mitral valve. The distal end of the device is inserted into the coronary sinus of the heart and the proximal end of the device rests within the right atrium along the tendon of Todaro and extends to at least the membranous septum of the tricuspid valve. Because the coronary sinus approximates the lateral (posterior) annulus of the mitral valve and the tendon of Todaro approximates the septal (anterior) annulus of the mitral valve, the device encircles approximately one half of the mitral valve annulus. The apparatus is then adapted to deform the underlying structures i.e. the septal annulus and lateral annulus of the mitral valve in order to move the posterior leaflet anteriorly and the anterior leaflet posteriorly and thereby improve leaflet coaptation and eliminate mitral regurgitation.
Owner:KARDIUM

Devices and methods for percutaneous repair of the mitral valve via the coronary sinus

Devices and methods for treating mitral regurgitation by reshaping the mitral annulus in a heart. One preferred device for reshaping the mitral annulus is provided as an elongate body having dimensions as to be insertable into a coronary sinus. The elongate body includes a proximal frame having a proximal anchor and a distal frame having a distal anchor. A ratcheting strip is attached to the distal frame and an accepting member is attached to the proximal frame, wherein the accepting member is adapted for engagement with the ratcheting strip. An actuating member is provided for pulling the ratcheting strip relative to the proximal anchor after deployment in the coronary sinus. In one preferred embodiment, the ratcheting strip is pulled through the proximal anchor for pulling the proximal and distal anchors together, thereby reshaping the mitral annulus.
Owner:EDWARDS LIFESCIENCES CORP

Catheter Having a Selectively Formable Distal Section

The current invention discloses a delivery catheter with a selectively formable distal section. The catheter comprises a central lumen that is configured to receive a puncture catheter that is used for puncturing the septum of a heart and to emplace devices used for treating mitral regurgitation. The delivery catheter includes control members disposed in a control lumen, and a plurality curved areas can be selectively formed in the distal section of the delivery catheter by applying tension to the control members. A first curve is shaped to conform to the interior of a heart chamber and a combination of the first curve and a second curve allows a clinician to manipulate the distal end of the catheter for selection of the proper vector for deploying a treatment device, or for guiding a treatment device around obstacles in a heart chamber.
Owner:MEDTRONIC VASCULAR INC

Medical kit for constricting tissue or a bodily orifice, for example, a mitral valve

A device, kit and method may include or employ an implantable device (e.g., annuloplasty implant) and a plurality of tissue anchors. The implantable device is positionable in a cavity of a bodily organ (e.g., a heart) and operable to constrict a bodily orifice (e.g., a mitral valve). Each of the tissue anchors may be guided into precise position by an intravascularly or percutaneously techniques. Constriction of the orifice may be accomplished via a variety of structures, for example an articulated annuloplasty ring, the ring attached to the tissue anchors. The annuloplasty ring may be delivered in an unanchored, generally elongated configuration, and implanted in an anchored generally arched, arcuate or annular configuration. Such may approximate the septal and lateral (clinically referred to as anterior and posterior) annulus of the mitral valve, to move the posterior leaflet anteriorly and the anterior leaflet posteriorly, thereby improving leaflet coaptation to reduce mitral regurgitation.
Owner:KARDIUM

Methods of implanting a mitral valve annuloplasty ring to correct mitral regurgitation

Methods of implanting an annuloplasty ring to correct maladies of the mitral annulus that not only reshapes the annulus but also reconfigures the adjacent left ventricular muscle wall. The ring may be continuous and is made of a relatively rigid material, such as Stellite. The ring has a generally oval shape that is three-dimensional at least on the posterior side. A posterior portion of the ring rises or bows upward from adjacent sides to pull the posterior aspect of the native annulus farther up than its original, healthy shape. In doing so, the ring also pulls the ventricular wall upward which helps mitigate some of the effects of congestive heart failure. Further, one or both of the posterior and anterior portions of the ring may also bow inward. The methods include securing the annuloplasty ring with the anterior portion against the annulus anterior aspect and the posterior portion against the annulus posterior aspect so that the ring posterior portion elevates and may also pull radially inward, the annulus posterior aspect and corrects the mitral regurgitation.
Owner:EDWARDS LIFESCIENCES CORP

Percutaneous transvalvular intrannular band for mitral valve repair

Mitral valve prolapse and mitral regurgitation can be treating by implanting in the mitral annulus a transvalvular intraannular band. The band has a first end, a first anchoring portion located proximate the first end, a second end, a second anchoring portion located proximate the second end, and a central portion. The central portion is positioned so that it extends transversely across a coaptive edge formed by the closure of the mitral valve leaflets. The band may be implanted via translumenal access or via thoracotomy.
Owner:HEART REPAIR TECH INC

Transvalvular intraannular band and chordae cutting for ischemic and dilated cardiomyopathy

Mitral valve prolapse and mitral regurgitation can be treating by implanting in the mitral annulus a transvalvular intraannular band. The band is positioned so that it extends transversely across a coaptive edge formed by the closure of the mitral valve leaflets, to inhibit prolapse into the left atrium. At least one marginal chordae is severed, to permit leaflet closure against the band.
Owner:HEART REPAIR TECH INC

Transvalvular intraanular band and chordae cutting for ischemic and dilated cardiomyopathy

Mitral valve prolapse and mitral regurgitation can be treating by implanting in the mitral annulus a transvalvular intraannular band. The band is positioned so that it extends transversely across a coaptive edge formed by the closure of the mitral valve leaflets, to inhibit prolapse into the left atrium. At least one marginal chordae is severed, to permit leaflet closure against the band.
Owner:HEART REPAIR TECH INC

Double basket assembly for valve repair

The invention provides medical devices, systems and methods for tissue approximation and repair and in particular to reduce mitral regurgitation by means of improved coaptation. The devices, systems and methods of the invention will find use in a variety of therapeutic procedures, including endovascular, minimally-invasive, and open surgical procedures, and can be used in various anatomical regions, including the cardiovascular system, heart, other organs, vessels, and tissues. The invention is particularly useful in those procedures requiring minimally-invasive or endovascular access to remote tissue locations, where the instruments utilized must negotiate long, narrow, and tortuous pathways to the treatment site.
Owner:ABBOTT CARDIOVASCULAR

Retrievable implant and method for treatment of mitral regurgitation

The invention is a device, and method for deploying same, configured for placement in a body lumen such as a coronary sinus, as may be desired to repair a mitral valve. The device includes a first anchor, a second anchor, and a bridge. The anchors are configured to delivered to a desired deployment site within the body lumen in a collapsed or contracted condition, and then be deployed by expanding the anchors into contact with the walls of the body lumen. One or more of the anchors may be configured to be radially collapsible after initial deployment in order to permit the anchor(s) to be repositioned in or removed from the body lumen. An anchor may be collapsible in response to a distal force applied to a portion of a proximal end thereof. A catheter for use with the implant is configured to deliver the implant to the site with the anchors in their respective collapsed configurations, and to release the anchors to permit them to expand into contact with the walls of the body lumen. The catheter is configured to apply a proximal force to one or both anchors, which may be applied via a cinch wire. The catheter may also be configured to apply a distal force against a portion of the proximal end of one or more of the anchors.
Owner:EDWARDS LIFESCIENCES CORP

Transcatheter device for treating mitral regurgitation

ActiveUS20190060072A1Improve valve functionReduce and eliminate valve regurgitationAnnuloplasty ringsMitral valve functionHeart chamber
The invention is a prosthetic device for improving function of a mitral valve. The device includes a sealing member configured for positioning between mitral valve leaflets. The device also includes an expandable anchor frame configured to be positioned within one or more heart chambers, for maintaining the sealing member at a desired position between valve leaflets. The sealing member reduces mitral regurgitation be filling the gap that can occur between opposing leaflets of a damaged mitral valve, thus restoring proper mitral valve closure.
Owner:EDWARDS LIFESCIENCES CORP

Medical device for constricting tissue or a bodily orifice, for example a mitral valve

A medical apparatus positionable in a cavity of a bodily organ (e.g., a heart) may constrict a bodily orifice (e.g., a mitral valve). The medical apparatus may include tissue anchors that are implanted in the annulus of the orifice. The tissue anchors may be guided into position by an intravascularly or percutaneously deployed anchor guiding frame. Constriction of the orifice may be accomplished by cinching a flexible cable attached to implanted tissue anchors. The medical device may be used to approximate the septal and lateral (clinically referred to as anterior and posterior) annulus of the mitral valve in order to move the posterior leaflet anteriorly and the anterior leaflet posteriorly and thereby improve leaflet coaptation and eliminate mitral regurgitation.
Owner:KARDIUM

Method of treating cardiomyopathy

The surgical implantation of a link, which may be in the form of a tether or a looped band, is proposed to connect and reduce the spacing between facing walls of the left ventricle, to reduce dilation of the left ventricle. Decreasing the distance between the facing portions of the ventricle may also more appropriately align the chordal apparatus to decrease mitral regurgitation. The implanted link thus improves heart function by reducing left ventricular failure.
Owner:UNIV OF MIAMI

Mitral repair and replacement devices and methods

ActiveUS20160074165A1Easily and effectively appliedEfficient reductionAnnuloplasty ringsProsthesisMitral annulus
An implant and method for repairing and / or replacing functionality of a native mitral valve are in various embodiments configured to reduce or eliminate mitral regurgitation and residual mitral valve leakage. A coiled anchor with a central turn that reduces in size upon implantation is used to approximate the amount of reduction in the size and the reshaping of the native mitral annulus to reduce valve leakage. A clip can be further applied to the native valve leaflets to reduce the size of the native mitral annulus and leakage therethrough. A prosthetic heart valve can be implanted in the coiled anchor to replace and further improve functionality of the valve. In some cases, the prosthetic valve can be implanted in a clipped valve, where the clip is detached from one of the native valve leaflets to provide space for the prosthetic valve to expand.
Owner:MITRAL VALVE TECHNOLOGIES SARL
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products