Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

753 results about "Leading-edge slats" patented technology

Slats are aerodynamic surfaces on the leading edge of the wings of fixed-wing aircraft which, when deployed, allow the wing to operate at a higher angle of attack. A higher coefficient of lift is produced as a result of angle of attack and speed, so by deploying slats an aircraft can fly at slower speeds, or take off and land in shorter distances. They are usually used while landing or performing maneuvers which take the aircraft close to the stall, but are usually retracted in normal flight to minimize drag. They decrease stall speed.

Air bearing having a cavity patch surface coplanar with a leading edge pad surface

An air bearing surface for read / write head of a magnetic disk drive is disclosed. The air bearing surface includes a trailing edge pad and a leading edge pad with trailing portions. A cavity is defined between the trailing edge pad and the trailing portions of the leading edge pad. A cavity patch is disposed within the cavity. The cavity patch can be disposed within the cavity towards one side of the read / write head.
Owner:WESTERN DIGITAL TECH INC

Everting balloon stent delivery system having tapered leading edge

A stent delivery catheter includes at least an inner and outer body, and a specially shaped balloon affixed near one end of both of the inner and outer bodies. At least the outer body is tubular, and the space between the outer and inner bodies defines an inflation lumen for inflating and deflating the balloon. The balloon is designed to surround and hold a compressed self-expanding stent in a small initial size. An inner portion of the cylindrical balloon extends from where it is affixed to the inner body of the catheter shaft at a point proximal to the stent to a distal leading edge at a point distal to the stent. At this leading edge, the balloon is folded back upon itself, and an outer portion of the balloon extends proximally from the leading edge to a point proximal of the stent where it is affixed to the outer body of the catheter shaft. When the outer body is retracted in the proximal direction, the balloon progressively peels back or everts, to progressively release the stent. This peeling action minimizes any friction that may exist between the stent and balloon during stent deployment. The leading distal folded edge of the balloon, both inner and outer portions, are tapered inward. This inner and outer tapering of the balloon portions tends to protect the leading edge of the stent, provides for easier advancement of the catheter system along the desired body passageway for treatment, and minimizes friction as the balloon is retracted or peeled back upon itself.
Owner:CARDINAL HEALTH SWITZERLAND 515 GMBH

Wing leading edge slat system

A mechanism for extending and supporting a high-lift device relative to an airfoil has a pair of support ribs coupled to the airfoil. A carrier track is pivotally coupled to the high-lift device and positioned between the pair of support ribs. The carrier track has a slot opening along a lower length thereof. A gear rack is coupled within the slot opening. A pinion gear is positioned between the support ribs and below the carrier track. The pinion gear engages with the gear rack for extending the high-lift device relative to the airfoil. A plurality of rollers is rotateably coupled to the support ribs and in bearing contact with the carrier track. At least one roller is positioned above the carrier track and a second roller is positioned below the carrier track. The second roller is positioned concentrically with the pinion gear.
Owner:THE BOEING CO

Airflow guide stator vane for axial flow fan and shrouded axial flow fan assembly having such airflow guide stator vanes

An airflow guide stator vane for an axial flow fan and a shrouded axial flow fan assembly having such stator vanes are disclosed. The airflow guide stator vane has a leading edge line, a trailing edge line, and an airflow guide surface extending from the leading edge line to the trailing edge line. The stator vane is radially positioned in an axial flow fan and is curved so that its leading edge line is perpendicular to oblique velocity components of an airflow each of which is a sum vector of a rotation-directional velocity component and a radius-directional component of an air particle of the airflow. The axial flow fan assembly comprises an axial flow fan and a shroud. The axial flow fan consists of a circular central hub connected with a driving shaft of a motor and a plurality of blades radially arranged along the circumference of the hub. The shroud consists of a housing surrounding the peripheral ends of said axial flow fan and forming an airflow passage, a motor support being positioned at its center portion and holding a motor for driving said axial flow fan, and the above-described stator vanes.
Owner:HANON SYST
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products