Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

126 results about "Coil sensitivity" patented technology

Coil sensitivity produces more visible effects in localized coils than in larger coils, such as a body coil) This is because the body coil has a more uniform sensitivity over the region imaged, whereas the localized coil has uniform sensitivity over a much smaller region.

Coil array autocalibration MR imaging

A magnetic resonance (MR) imaging apparatus and technique exploits spatial information inherent in a surface coil array to increase MR image acquisition speed, resolution and / or field of view. Magnetic resonance response signals are acquired simultaneously in the component coils of the array and, using an autocalibration procedure, are formed into two or more signals to fill a corresponding number of lines in the signal measurement data matrix. In a Fourier embodiment, lines of the k-space matrix required for image production are formed using a set of separate, preferably linear combinations of the component coil signals to substitute for spatial modulations normally produced by phase encoding gradients. One or a few additional gradients are applied to acquire autocalibration (ACS) signals extending elsewhere in the data space, and the measured signals are fitted to the ACS signals to develop weights or coefficients for filling additional lines of the matrix from each measurement set. The ACS lines may be taken offset from or in a different orientation than the measured signals, for example, between or across the measured lines. Furthermore, they may be acquired at different positions in k-space, may be performed at times before, during or after the principal imaging sequence, and may be selectively acquired to optimized the fitting for a particular tissue region or feature size. The in vivo fitting procedure is readily automated or implemented in hardware, and produces an enhancement of image speed and / or quality even in highly heterogeneous tissue. A dedicated coil assembly automatically performs the calibration procedure and applies it to measured lines to produce multiple correctly spaced output signals. One application of the internal calibration technique to a subencoding imaging process applies the ACS in the central region of a sparse set of measured signals to quickly form a full FOV low resolution image. The full FOV image is then used to determine coil sensitivity related information and dealias folded images produced from the sparse set.
Owner:BETH ISRAEL DEACONESS MEDICAL CENT INC

Motion corrected magnetic resonance imaging

A method of correcting for motion in magnetic resonance images of an object detected by a plurality of signal receiver coils comprising the steps of acquiring a plurality of image signals with the plurality of receiver coils, determining motion between sequential image signals relative to a reference, applying rotation and translation to image signals to align image signals with the reference, determining altered coil sensitivities due to object movement during image signal acquisition, and employing parallel imaging reconstruction of the rotated and translated image signals using the altered coil sensitivities in order to compensate for undersampling in k-space.
Owner:THE BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR UNIV

Systems and methods for image reconstruction of sensitivity encoded MRI data

Methods and systems in a parallel magnetic resonance imaging (MRI) system utilize sensitivity-encoded MRI data acquired from multiple receiver coils together with spatially dependent receiver coil sensitivities to generate MRI images. The acquired MRI data forms a reduced MRI data set that is undersampled in at least a phase-encoding direction in a frequency domain. The acquired MRI data and auto-calibration signal data are used to determine reconstruction coefficients for each receiver coil using a weighted or a robust least squares method. The reconstruction coefficients vary spatially with respect to at least the spatial coordinate that is orthogonal to the undersampled, phase-encoding direction(s) (e.g., a frequency encoding direction). Values for unacquired MRI data are determined by linearly combining the reconstruction coefficients with the acquired MRI data within neighborhoods in the frequency domain that depend on imaging geometry, coil sensitivity characteristics, and the undersampling factor of the acquired MRI data. An MRI image is determined from the reconstructed unacquired data and the acquired MRI data.
Owner:THE UNIV OF UTAH

Parallel collection image reconstruction method and device

The invention discloses a method for reconstructing a parallel-acquired image, comprising: generating reconstruction data by combining uniformly under-sampled data and low-frequency fully-sampled data in magnetic resonance imaging (MRI) K-space according to a hybrid sampling mode; calculating the sensitivity distribution of a coil according to the low-frequency fully-sampled data; and reconstructing an image according to the reconstruction data, the sensitivity distribution of the coil and the hybrid sampling mode. The invention also discloses an apparatus for reconstructing the parallel-acquired image. The method and the apparatus are adopted to generate reconstruction data by combining uniformly under-sampled data and low-frequency fully-sampled data in K-space according to the hybrid sampling mode and take the hybrid sampling mode into account during the image reconstruction, and the signal to noise ratio of the reconstructed image is effectively improved by using the reconstruction data combined with the low-frequency fully-sampled data in reconstructing the image since the low-frequency fully-sampled data contains more useful information.
Owner:SIEMENS AG

Method and apparatus of M/r imaging with coil calibration data acquisition

InactiveUS7064547B1High calibration signalFull FOV coverageMagnetic measurementsElectric/magnetic detectionImage resolutionData acquisition
A system and method for MR imaging with coil sensitivity or calibration data acquisition for reducing wrapping or aliasing artifacts is disclosed. Low resolution MR data representative of coil sensitivity of a coil arrangement within an FOV is acquired prior to application of an imaging data acquisition scan and is used to reduce wrapping or aliasing artifacts in a reconstructed image.
Owner:GENERAL ELECTRIC CO

Diffusion magnetic resonance imaging and reconstruction method

The invention discloses a diffusion magnetic resonance imaging and reconstruction method. The method includes the steps of S1, using multiple channel coils and adopting a multi-excitation diffusion imaging mode to carry out signal acquisition on tested targets to obtain k spatial data; S2, calculating a coil sensitivity figure and carrying out iterative initialization; S3, conducting iterative reconstruction on needed diffusion images on the basis of the POCS algorithm according to the collected k spatial data, the coil sensitivity figure obtained through calculation and initialization parameters. According to the method, not only is acquisition efficiency of signals improved, but also fuzzy artifacts and motion artifacts of the images are reduced, and image resolution is improved.
Owner:TSINGHUA UNIV

Nuclear magnetic resonance imaging method and device

The embodiment of the invention provides a nuclear magnetic resonance imaging method and device. The method comprises a step of collecting data of multiple groups of different contrast images at a same scanning position, a step of carrying out undersampling on the data of each group of contrast images at a phase direction periphery and carrying out full sampling at a self calibration signal line in a k space, and obtaining sampling data, a step of taking coil sensitivity information as sharing information of each group of images in multiple groups of different contrast images, and forming a reconstruction data matrix by the coil sensitivity information and the to-be-reconstructed information of the multiple groups of different contrast images, a step of taking the sampling data and coil sensitivity smoothing information as input data, taking the reconstruction data matrix as an output, and forming a target function for solving the coil sensitivity information and the to-be-reconstructed information of the multiple groups of different contrast images, and a step of using a nonlinear iterative method to solve the target function, reconstructing the multiple groups of different contrast images, and calculating the coil sensitivity information.
Owner:SHENZHEN INST OF ADVANCED TECH CHINESE ACAD OF SCI
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products