Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Diffraction anomaly sensor having grating coated with protective dielectric layer

Inactive Publication Date: 2001-12-18
IMATION
View PDF20 Cites 106 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

In yet another embodiment, the invention is a sensor for assaying a plurality of substances in a sample. The sensor includes a substrate having a surface formed in a substantially periodic grooved profile and a metal layer is formed outwardly from the surface of the substrate. A plurality of substantially non-overlapping dielectric layers are formed outwardly from the metal layer. Each of the dielectric layers is capable of suppressing the zero-order reflectance of incident light for at least one corresponding angle of incidence and polarization. This embodiment facilitates the sensing of a plurality of substances in a sample or the reuse of a single sensor for multiple samples having various substances.

Problems solved by technology

Despite these benefits, both current SPR grating sensors and prism-based sensors are susceptible to degradation due to oxidation of the metal film and its continuous exposure to the sample.
Another disadvantage of current SPR sensors is that the metal film causes many biological substances to denature, thus leading to erroneous readings.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Diffraction anomaly sensor having grating coated with protective dielectric layer
  • Diffraction anomaly sensor having grating coated with protective dielectric layer
  • Diffraction anomaly sensor having grating coated with protective dielectric layer

Examples

Experimental program
Comparison scheme
Effect test

Embodiment Construction

In the following detailed description, references are made to the accompanying drawings that illustrate specific embodiments in which the invention may be practiced. Electrical, mechanical and structural changes may be made to the embodiments without departing from the spirit and scope of the present invention. The following detailed description is, therefore, not to be taken in a limiting sense and the scope of the present invention is defined by the appended claims and their equivalents.

FIG. 1 illustrates a sensing system 10 in accordance with the present invention. Sensing system 10 includes light source 20, diffraction anomaly sensor 50, polarizing beamsplitter 80, detector 60 and detector 65. Light source 20, such as a laser, produces a light beam 25 incident upon sensor 50. Sensor 50 reflects light beam 25 as light beam 70 onto polarizing beamsplitter 80. Polarizing beamsplitter 80 splits light beam 70 into component 85 and component 90 which are incident upon detector array 6...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

No PUM Login to View More

Abstract

A method and apparatus for optically assaying a targeted substance in a sample using a diffraction anomaly grating sensor. The optical sensor has a diffraction grating coated with at least one dielectric layer such that the sensor is sensitized to interact with the targeted substance. Upon interaction, light incident upon the sensor at a particular angle propagates through the dielectric, thereby exhibiting a dip in zero-order reflectance. Advantages of the present invention include facilitating increased sensitivity while protecting the metal grating from tarnishing and degradation. The present invention also allows for the construction of sensors that are sensitized to a plurality of substances, thus eliminating the need for an operator to reconfigure the sensing system in order to assay different substances.

Description

FIELD OF THE INVENTIONThis invention relates generally to the field of optical sensing and, more particularly, to a method and apparatus for assaying chemical and biological materials.BACKGROUND OF THE INVENTIONRecently, extremely sensitive optical sensors have been constructed by exploiting an effect known as surface plasmon resonance (SPR). These sensors are capable of detecting the presence of a wide variety of materials in concentrations as low as picomoles per liter. SPR sensors have been constructed to detect many biomolecules including dinitrophenyl, keyhole limpet hemocyanin, .alpha.-Feto protein, IgE, IgG, bovine and human serum albumin, glucose, urea, avidin, lectin, DNA, RNA, hapten, HIV antibodies, human transferrin, and chymotrypsinogen. Additionally, SPR sensors have been built which detect chemicals such as polyazulene and various gases including halothane, tricloroethane and carbon tetrachloride.An SPR sensor is constructed by sensitizing a surface of a substrate to ...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
IPC IPC(8): G01N21/47G01N21/21G01N21/55
CPCG01N21/211G01N21/4788G01N21/553G01N21/7743
Inventor CHALLENER, WILLIAM A.
Owner IMATION
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products