Rare-earth doped oxyfluoride tellurate scintillation glass and preparation method thereof
A fluorooxytellurate and scintillation glass technology, applied in the field of scintillation glass, can solve the problems of affecting the scintillation luminescence output performance, poor short-wavelength transmittance, high refractive index, etc., achieving good short-wavelength transmittance and avoiding self-absorption , the effect of high density
- Summary
- Abstract
- Description
- Claims
- Application Information
AI Technical Summary
Problems solved by technology
Method used
Image
Examples
Embodiment 1
[0026] Preparation of rare earth doped oxyfluoride tellurate scintillation glass: according to raw material composition: TeO 2 : 65mol%, PbF 2 : 15mol%, BaF 2 : 7mol%, Gd 2 o 3 : 6mol%, Tb 2 o 3 : 7mol%, take the analytically pure raw materials, mix all raw materials evenly; then pour into a platinum crucible to melt into a melt, the melting temperature is 800-950 ° C, and keep warm for 0.5-2 hours after melting; pour the melt into After preheating the cast iron mold at 200-300°C, cool naturally to form glass; place the glass in a muffle furnace for annealing. Cool down to 45-55°C at a rate of one hour, then turn off the power supply of the muffle furnace and automatically cool down to room temperature to obtain the first product of scintillation glass, which is processed into 15×15×7mm after cutting, surface grinding and polishing, and becomes the scintillation glass of the present invention . Excite the scintillation glass with X-rays, measure the emitted light, and o...
Embodiment 2
[0028] Substantially the same as Example 1, the only difference is that the raw material component is: TeO 2 : 74mol%, PbF 2 : 14mol%, BaF 2 : 10mol%, Gd 2 o 3 : 1mol%, Eu 2 o 3 : 1 mol%. Excite the scintillation glass with X-rays, measure the emitted light, and obtain image 3 The emission spectra shown are from image 3 It can be seen that there are two emission peaks at 590nm and 618nm, corresponding to Eu 3+ Ionic 5 D. 0 → 7 f 1 , 5 D. 0 → 7 f 2 transition. 5 D. 0 → 7 f 2 The intensity of the 618nm wavelength scintillation peak produced by the transition is relatively large, and there is a large scintillation light output; at the same time, Gd 3+ ions can effectively sensitize Eu 3+ The luminescence of the ions enhances the Eu 3+ The flickering glow of ions.
Embodiment 3
[0030] Substantially the same as Example 1, the only difference is that the raw material component is: TeO 2 : 85mol%, PbF 2 : 7mol%, BaF 2 : 3mol%, Gd 2 o 3 : 3mol%, Tb 2 o 3 : 1mol%, Dy 2 o 3 : 1 mol%. Excite the scintillation glass with X-rays, measure the emitted light, and obtain Figure 4 The emission spectra shown are from Figure 4 It can be seen that there are 6 emission peaks in total, and the emission peaks at 413nm and 435nm correspond to Tb 3+ of 5 D. 3 → 7 f J (J=5, 4) energy level transitions, 487nm, 542nm, 581nm and 620nm correspond to Tb respectively 3+ Ionic 5 D. 4 → 7 f J (J = 6, 5, 4, 3) transitions. There is no Dy in the picture 3+ ion 4 f 9 / 2 → 6 h 15 / 2 and 4 f 9 / 2 → 6 h 13 / 2 The transition corresponding to the 483nm, 575nm emission peaks, which is due to the Dy 3+ Energy is effectively transferred to Tb through resonance transfer 3+ , so Dy 3+ Make Tb 3+ The luminous intensity is increased.
PUM
Property | Measurement | Unit |
---|---|---|
density | aaaaa | aaaaa |
Abstract
Description
Claims
Application Information
- R&D Engineer
- R&D Manager
- IP Professional
- Industry Leading Data Capabilities
- Powerful AI technology
- Patent DNA Extraction
Browse by: Latest US Patents, China's latest patents, Technical Efficacy Thesaurus, Application Domain, Technology Topic, Popular Technical Reports.
© 2024 PatSnap. All rights reserved.Legal|Privacy policy|Modern Slavery Act Transparency Statement|Sitemap|About US| Contact US: help@patsnap.com