Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

485results about "Shielding heads" patented technology

Magnetic etch-stop layer for magnetoresistive read heads

A method of producing a magnetoresistive read head and a tunneling magnetoresistive read head produced thereby are disclosed. A shield layer is provided. A magnetic etch-stop layer is formed over the shield layer, where the magnetic etch-stop layer comprises a nonmagnetic metal and a soft magnetic material with overall property still being magnetically soft. A sensor stack is formed over the magnetic etch-stop layer. A patterned mask layer is formed over the sensor stack. Material from a portion of the sensor stack not covered by the patterned mask is removed.
Owner:WESTERN DIGITAL TECH INC

Magnetic recording head for perpendicular recording, fabrication process, and magnetic disk storage apparatus mounting the magnetic head

Embodiments of the invention provide a perpendicular magnetic writing head with a suppressed effective track width to be written on a magnetic medium while increasing writing magnetic field gradient. In one embodiment a trailing side shield is disposed by way of a gap film to a main pole of a perpendicular writing magnetic head. A gap distance (Gt) on a trailing side of the main pole and a gap distance (Gs) on a lateral side of the main pole is defined as Gt<Gt, and a thickness (Gd) from an air bearing surface of the shield is made equal to or less than a throat height. Alternatively, the thickness of Gd on the side of the main pole is reduced to less than that on the trailing side of the main pole. Further, for preventing defoliation of the shield upon fabrication of the air bearing surface, a thickness for a portion away from the main pole is increased.
Owner:HITACHI GLOBAL STORAGE TECH NETHERLANDS BV

Method for manufacturing a magnetic recording transducer having side shields

A method for manufacturing a magnetic transducer is described. The method includes providing a negative mask having a bottom, a plurality of sides, and a top wider than the bottom. The method also includes depositing a nonmagnetic layer on the negative mask. The nonmagnetic layer has a plurality of portions covering the plurality of sides of the negative mask. The method also includes providing a first mask having a first trench therein. The negative mask resides in the first trench. The method further includes depositing side shield material(s), at least a portion of which resides in the first trench. The method further includes removing the negative mask to create a second trench between the plurality of portions of the nonmagnetic layer and form a pole, at least a portion of which resides in the second trench.
Owner:WESTERN DIGITAL TECH INC

Filled-gap magnetic recording head and method of making

A filled-gap magnetic recording head is provided comprising a flat or cylindrical contour head having a row of magnetic transducers in a gap region disposed between a rowbar substrate and a closure. The gap region is intentionally recessed to have a predetermined recess profile below a tape support surface. An electrical insulation layer is deposited on the tape support surface and on the recess profile of the gap region. The insulation layer prevents electrical shorting between the magnetic transducers and other conductive elements in the gap due to accumulations of conductive debris from the magnetic recording tape. A method of making the filled-gap magnetic recording head by intentionally recessing the gap region, cleaning the recessed profile and depositing an insulator layer is provided.
Owner:IBM CORP

Method and system for providing a magnetic recording transducer using a line hard mask and a wet-etchable mask

A method and system for fabricating a magnetic transducer is described. The transducer has device and field regions, and a magnetoresistive stack. Hard mask layer and wet-etchable layers are provided on the magnetoresistive stack and hard mask layer, respectively. A hard mask and a wet-etchable mask are formed from the hard mask and the wet-etchable layers, respectively. The hard and wet-etchable masks each includes a sensor portion and a line frame. The sensor portion covers part of the magnetoresistive stack corresponding to a magnetoresistive structure. The line frame covers a part of the magnetoresistive stack in the device region. The magnetoresistive structure is defined in a track width direction. Hard bias material(s) are then provided. Part of the hard bias material(s) is adjacent to the magnetoresistive structure in the track width direction. The wet-etchable sensor portion and line frame, and hard bias material(s) thereon, are removed.
Owner:WESTERN DIGITAL TECH INC

Magnetic transducer for perpendicular magnetic recording with single pole write head with trailing shield

The invention is a magnetic transducer with separated read and write heads for perpendicular recording. The write head has a trailing shield that extends from the return pole piece toward the main pole piece to form the write gap at the air-bearing surface. One embodiment of the trailing shield is a two part structure with a pedestal and a much smaller tip that confronts the main pole piece at the gap. In one embodiment a sink of non-magnetic, electrically conductive material is disposed in the separation gap between the read head and the flux bearing pole piece. The sink is preferably made of copper and does not extend to the ABS.
Owner:WESTERN DIGITAL TECH INC

Magnetic transducer for perpendicular magnetic recording with single pole write head with trailing shield

The invention is a magnetic transducer with separated read and write heads for perpendicular recording. The write head has a trailing shield that extends from the return pole piece toward the main pole piece to form the write gap at the air-bearing surface. One embodiment of the trailing shield is a two part structure with a pedestal and a much smaller tip that confronts the main pole piece at the gap. In one embodiment a sink of non-magnetic, electrically conductive material is disposed in the separation gap between the read head and the flux bearing pole piece. The sink is preferably made of copper and does not extend to the ABS.
Owner:WESTERN DIGITAL TECH INC

Tape recording head with multiple planes of transducer arrays

A tape recording head is provided comprising a multiple plane transducer row having a plurality of planes of transducer arrays fabricated on a substrate and which may be staggered or offset relative to one another in a direction perpendicular to the direction of linear motion of the recording tape over the recording head. The multiple plane recording head provides a significant advantage over a head having a single transducer plane by allowing simultaneous reading (or writing) of data tracks on a magnetic recording tape that are more closely spaced apart with respect to one another than the spacing of the read (or write) transducers in a single plane.
Owner:IBM CORP

Head for perpendicular magnetic recording with a shield structure connected to the return pole piece

An embodiment of the invention is a head for perpendicular recording that has a trailing shield and side shields that are connected to the return pole piece by two studs of ferromagnetic material. The studs extend parallel to the track direction and are located a sufficient distance away from the main pole piece to reduce the flux flow from the main pole piece to the studs. Optionally the studs can be recessed behind the air-bearing surface. The preferred embodiment of the invention is a magnetic transducer with separated read and write heads for perpendicular recording.
Owner:WESTERN DIGITAL TECH INC

Floating down stream perpendicular write head shield

A read / write head for a disk drive having a magnetoresistive (MR) read element and an inductive write element suitable for perpendicular recording of data onto a disk having a media layer in which the data is stored perpendicularly to the planar surface of the disk and a soft underlayer (SUL) underneath the media layer to provide a low reluctance return path for the magnetic recording field. The read element includes an MR sensor sandwiched between a pair of shields. The write element includes a vertically-oriented write pole and a horizontally-oriented yoke that connects the write pole and the adjacent shield of the read element. One or more pancake coils are looped around the yoke to produce a magnetic field that is focused by the tip of the write pole which is relatively smaller than the remainder of the write pole. A floating write shield is located downstream of the write pole, the shield having a throat region in close proximity to the write pole and a ramp portion sloping away from the write pole.
Owner:MAXTOR

Magnetic recording head and disk device with the same

A magnetic recording head includes a main magnetic pole that generates a recording magnetic field in a direction perpendicular to a recording layer, a write shield with a surface that faces a trailing side of the main magnetic pole, so that a write gap is interposed between the surface and the main magnetic pole, the write shield forming a magnetic core together with the main magnetic pole, a recording coil, a high frequency oscillator within the write gap, a wiring through which a current can flow through the main magnetic pole, the high frequency oscillator, and the write shield in series, and a magnetic element made of soft magnetic material, positioned within the write gap and separated from the high frequency oscillator, and configured to form a magnetic path passing through the main magnetic pole, the magnetic element, and the write shield, and not through the high frequency oscillator.
Owner:KK TOSHIBA

Perpendicular recording magnetic head

Embodiments in accordance with the present invention provide a perpendicular recording magnetic head whose dimensional dependency on the nonuniformity of magnetic field strength and distribution during manufacture is minimized, with narrowed tracks and without attenuation or erasure of adjacent track data while maintaining high magnetic field strength. According to one embodiment, a magnetic material (trailing / side shield) for creating a steep gradient of magnetic field strength is provided at a trailing side of a pole tip of a main magnetic pole piece and in a direction of the track width. The magnetic head is formed so that a gap (side gap length “gl”) between a side shield and a throat height portion of the pole tip progressively decreases with an increasing distance from an air-bearing surface, in a direction of an element height. That is, side gap length “gl” (2) at an element height position P2 is made smaller than side gap length “gl” (1) at an air-bearing surface position P1 so as to satisfy a relationship of gl(1)>gl(2).
Owner:WESTERN DIGITAL TECH INC

Flat profile tape head

A magnetic head according to one embodiment includes a first module having a flat profile tape bearing surface, a second module having a flat profile tape bearing surface, and a third module having a flat profile tape bearing surface. The third module is positioned on an opposite side of the second module than the first module. The tape bearing surfaces of the first, second and third modules may lie along substantially parallel planes, may be configured in a tangent (angled) configuration, or may be configured in an overwrap configuration. Data writing and reading functions are usually performed by different modules at a given time.
Owner:IBM CORP

Magnetic recording head having protected reader sensors and near zero recessed write poles

A magnetic head according to one embodiment includes a module, the module having both read and write transducers positioned towards a media facing side of the module, wherein the read and write transducers are selected from a group consisting of piggyback read-write transducers, merged read-write transducers, interleaved read and write transducers, and an array of write transducers flanked by servo read transducers; wherein the write transducers include write poles having media facing sides with negative, zero or near-zero recession from a plane extending along the media facing side of a substrate of the module; wherein the read transducers each have at least one shield, wherein a media facing side of the at least one shield is more recessed from the plane than the write poles.
Owner:IBM CORP

Tapered write pole for reduced skew effect

A write pole for a read / write head of a disk drive system has a tapered surface on a leading edge thereof. Preferably, the tapered surface has a taper angle of between 0 and 20 degrees from a plane normal to the ABS. By having a write pole with a taper in this manner, sufficient write fields can be achieved even with thinner write pole tips on the ABS surface. By decreasing the thickness of the write pole tip in this manner while maintaining sufficiently high write fields, the skew profile of a write head can be decreased and areal density increased.
Owner:MAXTOR

Longitudinal media with soft underlayer and perpendicular write head

InactiveUS7149045B1High write field gradientReduce width of transitionRecord information storageDigital recordingEngineeringRecording layer
A magnetic recording device including a longitudinal magnetic recording medium. The longitudinal magnetic recording medium includes a magnetically soft underlayer disposed under a longitudinal recording layer. A perpendicular write head is utilized to write data to the longitudinal magnetic recording medium wherein the longitudinal recording layer is disposed within an effective write gap formed by the perpendicular write head and the underlayer. The longitudinal component of the perpendicular write head is sufficient to switch the magnetic grains in the recording layer in the presence of the perpendicular field. The magnetic recording medium can have a high areal density and improved magnetic properties.
Owner:MAXTOR

Perpendicular magnetic recording head and magnetic disk apparatus

According to one embodiment, a perpendicular magnetic recording head includes a main pole which generates a recording magnetic field, a return pole which forms a closed magnetic circuit for the recording magnetic field, and a side shield magnetically spaced from the main pole in a cross-track direction in which a point on a trailing edge of the side shield which is closest to the main pole is positioned on a leading side of a trailing edge of the main pole.
Owner:KK TOSHIBA
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products