High k gate stack on III-V compound semiconductors
- Summary
- Abstract
- Description
- Claims
- Application Information
AI Technical Summary
Benefits of technology
Problems solved by technology
Method used
Image
Examples
example
[0081] In this example, a MOSCAP was prepared utilizing a semiconductor structure in accordance with the present invention. The inventive structure included, from bottom to top, an atomic-H passivated GaAs substrate, an amorphous Si layer, SiOx and HfO2. The structure was formed utilizing the inventive processing details described above. After formation, a gate electrode was formed thereon and the structure was annealed at 700° C., 1 min., in nitrogen.
[0082]FIG. 4A shows the CV curves of such a MOSCAP at 1 kHz, 10 kHz, 100 kHz and 1 MHz. Specifically, the CV curves have very low frequency dispersion, which is indicative of low interface state density. FIG. 4B shows the Dit extracted as a function of gate voltage of the same MOSCAP as in FIG. 4A using the frequency-dependent method well known in the art. The results show a minimum Dit value of 6×1011 cm−2 / eV, which is over an order of magnitude lower than typically obtained on MOSCAPs with HfO2 directly on an unpassivated GaAs.
PUM
Abstract
Description
Claims
Application Information
- R&D Engineer
- R&D Manager
- IP Professional
- Industry Leading Data Capabilities
- Powerful AI technology
- Patent DNA Extraction
Browse by: Latest US Patents, China's latest patents, Technical Efficacy Thesaurus, Application Domain, Technology Topic, Popular Technical Reports.
© 2024 PatSnap. All rights reserved.Legal|Privacy policy|Modern Slavery Act Transparency Statement|Sitemap|About US| Contact US: help@patsnap.com