Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Organic electroluminescence device and preparation method thereof

An electroluminescence device and a luminescence technology, which are applied in the fields of electric solid-state devices, semiconductor/solid-state device manufacturing, electrical components, etc., can solve the problems of poor film-forming properties of lithium fluoride, electronic quenching, and easy formation of electronic defects, etc.

Inactive Publication Date: 2015-05-27
OCEANS KING LIGHTING SCI&TECH CO LTD +2
View PDF0 Cites 0 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Problems solved by technology

[0003] The electron injection layer of traditional organic electroluminescent devices generally uses lithium fluoride, but because the melting point of lithium fluoride is too high, a large current must be used for evaporation during evaporation, and the evaporation room of the organic evaporation room is too high , will damage other organic functional layers, and the film-forming property of lithium fluoride is poor, and it is easy to form electron defects, resulting in the quenching of electrons and reducing the recombination probability of electrons and holes

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Organic electroluminescence device and preparation method thereof
  • Organic electroluminescence device and preparation method thereof
  • Organic electroluminescence device and preparation method thereof

Examples

Experimental program
Comparison scheme
Effect test

preparation example Construction

[0035] The preparation method of the organic electroluminescence device 100 of an embodiment, it comprises the following steps:

[0036] Step S110 , sequentially forming a hole injection layer 20 , a hole transport layer 30 , a light emitting layer 40 , an electron transport layer 50 and an electron injection layer 60 on the surface of the anode 10 .

[0037] The anode 10 is indium tin oxide glass (ITO), fluorine-doped tin oxide glass (FTO), aluminum-doped zinc oxide glass (AZO) or indium-doped zinc oxide glass (IZO), preferably ITO, and the thickness of the anode 10 is 50 nm to 300 nm, preferably 130 nm.

[0038] In this embodiment, before the hole injection layer 20 is formed on the surface of the anode 10, the anode 10 is pretreated. The pretreatment includes: performing photolithography on the anode 10, cutting it into the required size, using detergent, deionized Water, acetone, ethanol, and isopropanone were each ultrasonically cleaned for 15 minutes to remove organic p...

Embodiment 1

[0053] The structure ITO / MoO prepared in this embodiment 3 / NPB / Alq 3 / Bphen / RbCl:FeCl 3 / Mg:Ag / Ag organic electroluminescent device, in this embodiment and the following embodiments, " / " indicates a layer, and ":" indicates doping.

[0054] Magnetron sputtering anode on the glass substrate, the material is ITO, and then photolithography treatment, cut into the required size, followed by detergent, deionized water, acetone, ethanol, isopropanol ultrasonic 15min each, to remove the glass surface organic pollutants; after cleaning, carry out proper treatment on the conductive substrate: oxygen plasma treatment, the treatment time is 5min, the power is 30W; the thickness is 80nm, and the hole injection layer is evaporated, and the material is MoO 3 , with a thickness of 25nm; the vapor-deposited hole transport layer, the material is NPB, and the thickness is 55nm; the vapor-deposited light-emitting layer, the material is Alq 3 , with a thickness of 16nm; the vapor-deposited el...

Embodiment 2

[0061] The structure prepared in this example is IZO / V 2 o 5 / TAPC / DCJTB / TPBi / Rb 2 CO 3 :FeBr 3 / Sr:Pt / Pt organic electroluminescence device.

[0062] Magnetron sputtering anode on the glass substrate, the material is IZO, and then photolithography treatment, cut into the required size, followed by detergent, deionized water, ultrasonic 15min, remove the organic pollutants on the glass surface; Hole injection layer: the material is V 2 o 5 , with a thickness of 40nm; evaporated hole transport layer: the material is TAPC, with a thickness of 45nm; evaporated luminescent layer: the selected material is DCJTB, with a thickness of 8nm; evaporated electron transport layer, the material is TPBi, with a thickness of 65nm; The injection layer includes a rubidium compound doped layer and a metal doped layer, and the rubidium compound doped layer is deposited by electron beam evaporation, and the material is Rb 2 CO 3 :FeBr 3 , Rb 2 CO 3 with FeBr 3 The mass ratio of the rub...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

No PUM Login to View More

Abstract

An organic electroluminescence device comprises an anode, a hole injection layer, a hole transporting layer, a luminous layer, an electron transporting layer, an electron injection layer and a cathode which are overlapped in sequence, wherein the electron injection layer comprises a rubidium compound doped layer and a metal doped layer; the rubidium compound doped layer is made of a rubidium compound material and a molysite material doped in the rubidium compound material; the rubidium compound material is one or more of rubidium carbonate, rubidium chloride, rubidium nitrate and rubidium sulfate; the molysite material is one or more of ferric chloride, ferric bromide and ferric sulfide; the metal doped layer is made of a first metal material and a second metal material doped in the first metal material; the work function of the first metal material is -2.0 eV to -3.5 eV; the work function of the second metal material is -4.0 eV to -5.5 eV. The light efficiency of the organic electroluminescence device is relatively high. The invention further provides a preparation method of the organic electroluminescence device.

Description

technical field [0001] The invention relates to an organic electroluminescence device and a preparation method thereof. Background technique [0002] The luminescence principle of organic electroluminescent devices is based on the action of an external electric field, electrons are injected from the cathode to the lowest unoccupied molecular orbital (LUMO) of organic matter, and holes are injected from the anode to the highest occupied molecular orbital (HOMO) of organic matter. Electrons and holes meet, recombine, and form excitons in the light-emitting layer. Excitons migrate under the action of an electric field, transfer energy to the light-emitting material, and excite electrons to transition from the ground state to the excited state. The excited state energy is deactivated by radiation to generate photons , releasing light energy. [0003] The electron injection layer of traditional organic electroluminescent devices generally uses lithium fluoride, but because the m...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
Patent Type & Authority Applications(China)
IPC IPC(8): H01L51/52H01L51/54H01L51/56
Inventor 周明杰黄辉张振华王平
Owner OCEANS KING LIGHTING SCI&TECH CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products