Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

2053results about "Belt anchoring devices" patented technology

Seat and occupant restraint system

A restraint system for moving a vehicle seat and occupant toward the vehicle floor. In one embodiment a fluid cylinder pivotally mounted to the floor has an extendable piston rod connected to a linkage mounted to the vehicle seat. A three point belt assembly mounted to the seat is connected to the cylinder rod. Retraction of the cylinder rod pretensions or tightens the three point buckle assembly and subsequently moves the seat towards the vehicle floor. In an alternate embodiment a displacement member including at least a flexible portion is connected at one end to a piston within a fluid cylinder and is connected at the other end to the linkage. An angle between 0 and 180 degrees is imparted to the flexible portion of the displacement member, allowing the cylinder to be oriented in alternate directions for space efficiency. Retraction of the cylinder rod tightens the three point buckle assembly and moves the seat towards the vehicle floor.
Owner:INDIANA MILLS MFG

Weight classification system

A method and apparatus is provided that classifies a seat occupant into one of several different weight classes based on an estimated value of the seat occupant weight. An occupant's measured weight varies when the occupant's seating position changes or when the vehicle travels over adverse road conditions. A plurality of weight sensors are used to measure the weight exerted by a seat occupant against a seat bottom and are used to determine center of gravity for the seat occupant. A seat belt force sensor is also used to assist in classifying the seat occupant. Compensation factors using the seat belt force and center of gravity information are used to generate an estimated weight value. The estimated value of the occupant weight is compared to a series of upper and lower weight thresholds assigned to each of the weight classes to generate an occupant weight sample class. Over a period of time, several estimated weight values are compared to the weight class thresholds. Once a predetermined number of consistent and consecutive occupant weight sample classes is achieved, the occupant is locked into a specific occupant weight class. When the weight class is locked, the separation value between the upper and lower thresholds is increased to account for minor weight variations due to adverse road conditions and changes in occupant position.
Owner:SIEMENS VDO AUTOMOTIVE CORP

Inflatable tubular torso restraint system with pivoting upper anchor point attachment

A seat restraint system whose torso belt includes an inflatable structure that inflates upon impact to protect the occupants of a vehicle such as an automobile. The torso belt is secured to an anchor arm that is pivotally mounted on a side surface of a seat of the vehicle or a side structure of the vehicle. The anchor arm is rotationally biased to remove slack in the torso belt and locks up in the event of a vehicle crash or sudden stop. The inflatable structure is linked to a gas generator and crash sensor. The gas generator may be mounted in the seat or within the anchor arm itself. When an impact above a predetermined level of severity is detected, the gas generator is ignited, inflating the inflatable structure which contracts in length as it inflates. In a preferred embodiment, the inflatable structure is a braided tube. As the braided tube inflates, the diameter of the tube increases significantly and its length decreases significantly, due to the orientation of the fibers comprising the braided tube. The contraction in length pretensions the seat belt system by pulling any additional slack out of the seat belt systems. In a frontal impact, the inflated structure restricts the forward motion of an occupant and distributes crash loads over a larger occupant surface area to reduce both primary and secondary injuries. In a side impact, the inflated structure passes over the occupant's shoulder, restricts occupant motion, distributes crash loads and provides head and neck protection.
Owner:ZODIAC AUTOMOTIVE US

Weight classification system

A method and apparatus is provided that classifies a seat occupant into one of several different weight classes based on an estimated value of the seat occupant weight. An occupant's measured weight varies when the occupant's seating position changes or when the vehicle travels over adverse road conditions. A plurality of weight sensors are used to measure the weight exerted by a seat occupant against a seat bottom and are used to determine center of gravity for the seat occupant. A seat belt force sensor is also used to assist in classifying the seat occupant. Compensation factors using the seat belt force and center of gravity information are used to generate an estimated weight value. The estimated value of the occupant weight is compared to a series of upper and lower weight thresholds assigned to each of the weight classes to generate an occupant weight sample class. Over a period of time, several estimated weight values are compared to the weight class thresholds. Once a predetermined number of consistent and consecutive occupant weight sample classes is achieved, the occupant is locked into a specific occupant weight class. When the weight class is locked, the separation value between the upper and lower thresholds is increased to account for minor weight variations due to adverse road conditions and changes in occupant position.
Owner:SIEMENS VDO AUTOMOTIVE CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products