Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Double-function negative electrode and applications of double-function negative electrode as all-vanadium flow battery negative electrode

An all-vanadium redox flow battery, dual-function technology, applied in the direction of battery electrodes, fuel cells, regenerative fuel cells, etc., can solve the problems of not being suitable for large-scale applications, reducing hydrogen evolution, and high electrode costs, so as to improve electrocatalytic activity and electrocatalytic activity. Effects of chemical reversibility, suppression of hydrogen evolution, and simple preparation method

Active Publication Date: 2015-04-15
DALIAN INST OF CHEM PHYSICS CHINESE ACAD OF SCI
View PDF5 Cites 24 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Problems solved by technology

[0013] (2) Metallize electrode materials such as graphite felt, carbon paper, etc., that is, modify metal ions on the surface of carbon fibers, such as Sun et al. (Sun, B.T.; Skyllas-Kazacos, M. Chemical Modification and Electrochemical Behavior of Graphite Fiber in Acidic Vanadium Solution.Electrochim.Acta1991,36,513-517.) Modified Mn on the carbon fiber surface 2+ 、 Te 4+ 、In 3+ and Ir 3+ etc., found Ir 3+ It is most effective in improving the electrocatalytic activity of electrode materials, but due to the high cost of electrodes due to the use of noble metals, it is not suitable for large-scale applications
However, even if no overcharge occurs, the hydrogen evolution reaction will be accompanied by V 2+ / V 3+ The reactions are carried out simultaneously, so this method does not reduce hydrogen evolution

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Double-function negative electrode and applications of double-function negative electrode as all-vanadium flow battery negative electrode
  • Double-function negative electrode and applications of double-function negative electrode as all-vanadium flow battery negative electrode
  • Double-function negative electrode and applications of double-function negative electrode as all-vanadium flow battery negative electrode

Examples

Experimental program
Comparison scheme
Effect test

Embodiment 1

[0052] A certain size of carbon felt was impregnated in 0.01M Bi(NO 3 ) 3 HNO 3 solution, after ultrasonic dispersion for 30 min, take it out, put it in a drying oven at 105 ° C for 10 h, and then place the loaded Bi(NO 3 ) 3 The carbon felt was heated to 600°C in a nitrogen atmosphere, and H 2 Constant temperature reaction 1h, the Bi 3+ It was reduced to Bi, then cooled to room temperature under a nitrogen atmosphere, and weighed using an electronic balance to determine that the mass ratio of Bi loading was 1%.

[0053] In order to test the electrochemical activity of vanadium ion redox couple on the surface of Bi-modified carbon felt, the Bi-modified carbon felt prepared in Example 1 was tested by cyclic voltammetry. Bi-modified carbon felt was used as the working electrode, a non-porous graphite plate was used as the counter electrode, and a saturated calomel electrode was used as the reference electrode. The electrochemical testing instrument used was the CHI612 elect...

Embodiment 2

[0083] The electrodeposition solution consists of 12g / L BiCl 3 , 55g / L tartaric acid, 100g / L glycerin and 45g / L sodium chloride solution, the pH value of the solution is adjusted to about 1.0 with dilute hydrochloric acid. A carbon felt of a certain size is used as the working electrode, and the counter electrode is a graphite plate. Direct current electrochemical deposition is adopted, and the current density is 10mA / cm 2 , the deposition time is 10s. The mass ratio of Bi loading was determined to be 1% by weighing with an electronic balance. The negative electrode material not only has high electrocatalytic activity, can reduce the electrochemical polarization of the liquid flow energy storage battery, and increase the working current density of the battery; it also has a high hydrogen evolution overpotential, which can inhibit hydrogen evolution and improve the battery at high operating current density. the next lifespan.

[0084] The single cell assembly evaluation cond...

Embodiment 3

[0086] A certain size of graphite felt was impregnated in 0.02M Bi(NO 3 ) 3 in the ethylene glycol solution, ultrasonically dispersed for 30min, took it out, put it in a drying oven at 200°C for 10h, and then loaded the Bi(NO 3 ) 3 The graphite felt is heated up to 500°C in a nitrogen atmosphere, and H 2 Constant temperature reaction 2h, Bi 3+ It was reduced to Bi, then cooled to room temperature under a nitrogen atmosphere, and weighed using an electronic balance to determine that the mass ratio of Bi loading was 2%. The negative electrode material not only has high electrocatalytic activity, can reduce the electrochemical polarization of the liquid flow energy storage battery, and increase the working current density of the battery; it also has a high hydrogen evolution overpotential, which can inhibit hydrogen evolution and improve the battery at high operating current density. the next lifespan.

[0087] The single cell assembly evaluation conditions are the same as i...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

PropertyMeasurementUnit
particle sizeaaaaaaaaaa
particle sizeaaaaaaaaaa
particle sizeaaaaaaaaaa
Login to View More

Abstract

The invention relates to an all-vanadium flow battery double-function negative electrode, wherein a carbon material is adopted as a substrate, a Bi-containing electro-catalyst is modified on the surface of the substrate, the Bi-containing electro-catalyst is one or more than two selected from a Bi elementary substance, Bi2O3, a Bi halide and a Bi metal salt, the Bi halide is bismuth fluoride, bismuth trichloride, bismuth bromide, or bismuth iodide, and the Bi metal salt is bismuth sulfate, bismuth nitrate, bismuth phosphate, bismuth formate or bismuth acetate. According to the present invention, the electrode is suitable for the negative electrode of the all-vanadium flow battery, the electrocatalysis activity and the electrochemical reversibility of the electrode material on the V<2+> / V<3+> oxidation reduction reaction can be substantially improved, and the charge transfer resistance can be reduced; and the high hydrogen evolution overpotential is provided so as to inhibit the occurrence of the hydrogen evolution reaction and prolong the service life of the battery.

Description

technical field [0001] The invention relates to the field of liquid flow energy storage batteries in chemical energy storage technology, in particular to electrodes of all-vanadium redox flow batteries. Background technique [0002] Due to its independent output power and capacity, the all-vanadium redox flow battery has flexible system design; high energy efficiency, long life, high operation stability and reliability, and low self-discharge; large degree of freedom in site selection, no pollution, and simple maintenance. With the advantages of low operating cost and high security, it has broad development prospects in large-scale energy storage. It is considered to be an effective method to solve the random and intermittent unsteady characteristics of renewable energy power generation systems such as solar energy and wind energy. There are significant demands in power generation and smart grid construction. [0003] Different from the functions of ordinary chemical power ...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
Patent Type & Authority Applications(China)
IPC IPC(8): H01M4/86H01M4/90H01M4/96H01M8/18B82Y30/00
CPCB82Y30/00H01M4/9083H01M8/188H01M2004/8684Y02E60/50
Inventor 刘涛张华民李先锋杨晓飞
Owner DALIAN INST OF CHEM PHYSICS CHINESE ACAD OF SCI
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products