Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

489 results about "Heart sounds" patented technology

Heart sounds are the noises generated by the beating heart and the resultant flow of blood through it. Specifically, the sounds reflect the turbulence created when the heart valves snap shut. In cardiac auscultation, an examiner may use a stethoscope to listen for these unique and distinct sounds that provide important auditory data regarding the condition of the heart.

Apparatus and method for chronically monitoring heart sounds for deriving estimated blood pressure

ActiveUS6869404B2Simplified and minimized in sizeElectrocardiographyAuscultation instrumentsRegression analysisT wave
A minimally invasive, implantable heart sound and ECG monitor and associated method for deriving blood pressure from heart sound data. The device is equipped with an acoustical sensor for detecting first and second heart sounds which are sampled and stored during sensing windows following R-wave and T-wave detections, respectively. ECG and heart sound data are stored in a continuous, looping memory, and segments of data are stored in long-term memory upon an automatic or manual data storage triggering event. Estimated blood pressure is calculated based on custom spectral analysis and processing of the first and second heart sounds. A calibration method includes measuring a patient's blood pressure using a standard clinical method and performing regression analysis on multiple spectral variables to identify a set of best fit weighted equations for predicting blood pressure. Concurrent ECG and estimated blood pressure may be displayed for review by a physician.
Owner:MEDTRONIC INC

Wearable heart failure monitor patch

The invention is directed to a system for acquiring electrical footprint of the heart, electrocardiogram (EKG or ECG), heart sound, heart rate, nasal airflow and pulse oximetry incorporated into a mobile device accessory. The ECG and heart sound signals are conveniently acquired and transmitted to a server via the mobile device, offering accurate heart failure analysis, and sleep disorder breathing indication.
Owner:RIJUVEN

Heart-sound detecting apparatus and pulse-wave-propagation-velocity-relating-information obtaining system using the heart-sound detecting apparatus

A heart-sound detecting apparatus, including: a heart-sound microphone which detects a plurality of heart sounds produced by a heart of a living subject and outputs a heart-sound signal representative of the detected heart sounds; a smoothing device for smoothing, by differentiation, a waveform of the heart-sound signal output from the heart-sound microphone; a squaring device for squaring an amplitude of the smoothed waveform with respect to a base line of the heart-sound signal; and a start-point determining device for determining a start point of a first heart sound I as one of the detected heart sounds, based on that the squared amplitude is greater than a prescribed threshold value.
Owner:OMRON HEALTHCARE CO LTD

Determining a patient's posture from mechanical vibrations of the heart

A system for determining a patient's posture by monitoring heart sounds. The system comprises an implantable medical device that includes a sensor operable to produce an electrical signal representative of heart sounds, a sensor interface circuit coupled to the sensor to produce a heart sound signal, and a controller circuit coupled to the sensor interface circuit. The heart sounds are associated with mechanical activity of a patient's heart and the controller circuit is operable to detect a posture of the patient from a heart sound signal.
Owner:CARDIAC PACEMAKERS INC

Systems and methods for corroborating impedance-based left atrial pressure (LAP) estimates for use by an implantable medical device

Various techniques are provided for assessing the reliability of left atrial pressure (LAP) estimates made by an implantable medical device based on impedance values or related electrical values. In one example, various cardioelectric and cardiomechanical parameters are used to corroborate LAP estimation in circumstances where the LAP estimates deviate from an acceptable, satisfactory or otherwise healthy range. The cardioelectric parameters include, e.g.: ST elevation; heart rate (HR); heart rate variability (HRV); T-wave alternans (TWA); QRS waveform parameters; P-wave duration; evoked response (ER) parameters; and intrinsic PV / AV / VV conduction delays. The cardiomechanical parameters include, e.g.: heart rate turbulence (HRT); cardiogenic impedance signals; heart sounds; and non-LAP blood pressure measurements, such as aortic pressure measurements. The device compares the cardioelectric and cardiomechanical parameters against corresponding baseline values to determine whether variations in the parameters corroborate the LAP estimates. If not, the LAP estimates are selectively cancelled or suspended, or the overall procedure is re-calibrated.
Owner:PACESETTER INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products