Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

High capacity redox electrodes

a redox electrode, high-capacity technology, applied in the direction of diaphragms, sludge treatment, biomass after-treatment, etc., can solve the problems of film electrochemical inactivation, electrode destruction, conducting film degradation,

Inactive Publication Date: 2016-06-09
GENERAL ELECTRIC CO
View PDF1 Cites 7 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

The patent describes a method for making a redox electrode by coating or blending a redox polymer onto a support substrate. This electrode can be used in various applications, such as in batteries or chemical sensors. The methods described in the patent provide a simple and effective way to produce redox electrodes with good stability and performance.

Problems solved by technology

Applying potentials much greater than the oxidation potential of the redox polymer (i.e., overoxidation) results in the degradation of the conducting films.
Therefore, typically in thin films of redox polymers, only low voltages can be applied to the film to prevent decomposition of the film, which would render the film electrochemically inactive, destroying the electrode.
Further, with respect to the manufacture of such electrodes, industrial application of common conductive polymers, such as polythiophenes, polypyrroles and polyanilines, has been limited due to the poor mechanical properties and processability of the polymeric material.
In general these polymers are only slightly soluble in aqueous and most common organic solvents, making solution processing techniques for film formation difficult.
Additionally, thick films formed from the conducting polymers are generally brittle and therefore do not have good mechanical properties.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • High capacity redox electrodes
  • High capacity redox electrodes
  • High capacity redox electrodes

Examples

Experimental program
Comparison scheme
Effect test

first embodiment

[0024]Turning to FIG. 1, in a first embodiment, redox electrodes 100 may be manufactured by solution casting (block 102) films of a PEDOT:PSS aqueous dispersion 104 blended with cellulose fibers 106. Various form factors of the electrodes 100 can be manufactured using this method (e.g., rods) by casting the solution into molds 108 of desired shape. As noted above, redox electrodes 100 formed in this manner may have a thickness greater than 1 micron relative to the underlying substrate surface.

[0025]By way of example, in this embodiment, an aqueous dispersion 104 of PEDOT:PSS (e.g., 1.0 wt %-1.3 wt %) blended with raw cellulose fibers 106 (10 μm to 5000 μm in length, which may be purchased in fiber form or generated through a ball milling process of cellulose paper). The PEDOT:PSS aqueous dispersion 104 is blended with the cellulose fibers to produce a slurry 110 that can be solution cast (block 102) into molds 108 to produce the electrodes 100 of different dimensions and form factor...

second embodiment

[0029]In a second embodiment, instead of solution casting, a dip coating approach may be employed. In one such embodiment, cellulose paper 120 cut to a desired dimension (e.g., Whatman 31 ETF paper) may be dip coated (block 122) into a PEDOT:PSS aqueous dispersion 104. In one such implementation, the cellulose paper may be dipped into the aqueous dispersion 104 for a length of time that yields the desired thickness of film forming the electrode 100 and yields the desired resistance values of the film. In other implementations, the cellulose paper 120 may be repeatedly dipped in the aqueous dispersion 104 to obtain the desired thickness and resistance values of the film that will form the redox electrode 100. By way of example, in one test, after four dip coat applications and drying processes, a uniform PEDOT:PSS coated cellulose paper was obtained suitable for use as an electrode 100 and having a resistance of less than 1 kΩ (at 4 mm probe distance).

third embodiment

[0030]In a third embodiment, another solution casting approach may be employed. In this embodiment, a PEDOT:PSS aqueous dispersion 104 is solution cast (block 102) onto cellulose paper 120 (e.g., Whatman 31 ETF paper) until desired thickness of film and resistance values of film are obtained to form redox electrodes 100. In one implementation, the cellulose paper 120 is housed in an aluminum frame and heated at high temperature (e.g., 100° C.-150° C.). In this example, after six coats (e.g., three on each side), followed by drying and cross-linking, a uniform PEDOT:PSS coated cellulose paper was obtained suitable for use as a redox electrode 100 and having a resistance of less than 1 kΩ (at 4 mm probe distance).

[0031]With the preceding discussion of manufacturing approaches in mind, and turning to FIG. 4, in certain embodiments the surface area of the lead or wire 140 (e.g., copper wire) that is in contact with the PEDOT:PSS electrode may be increased. By way of example, a copper wi...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

PropertyMeasurementUnit
thicknessaaaaaaaaaa
wt %aaaaaaaaaa
wt %aaaaaaaaaa
Login to View More

Abstract

The present disclosure relates to the manufacture and use of redox electrodes. In certain embodiments, the redox electrodes are manufactured using a hybrid material approach, such as using a redox polymer in combination with a support substrate, such as cellulose fibers or paper. In certain implementations, the redox electrodes are suitable for use at voltages greater than 25 V.

Description

BACKGROUND[0001]The subject matter disclosed herein relates to oxidation-reduction (redox) polymers, their manufacture, and use.[0002]Redox polymers are highly regarded electrode materials for many research fields, including basic polymer science, electronics and optoelectronics, photovoltaics, capacitors, rechargeable batteries, biosensors, and novel cell systems. In particular, redox polymers may have properties that include high conductivity, high stability, and / or good optical transparency, which may be useful in these fields.[0003]The redox polymers can exist in a conducting state, where the polymer is doped to allow formation of positive charges along the conjugated backbone. Anions from a supporting electrolyte or anionic copolymer allow the redox polymer to function as an electrode material. In the majority of applications these materials are currently used in, only low voltages (e.g., less than 5 V) are required and applied to the films. Applying potentials much greater tha...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
Patent Type & Authority Applications(United States)
IPC IPC(8): G01N27/30G01N27/453
CPCG01N27/453G01N27/30C12M47/06H01G9/042H01G9/22H01G11/02H01G11/28H01G11/48H01G11/86H01M4/602Y02E60/10Y02E60/13
Inventor PETERS, ANDREA JEANNINESTECHER, THOMAS ELLIOTGALLIGAN, CRAIG PATRICKPULEO, CHRISTOPHER MICHAELLENIGK, RALF
Owner GENERAL ELECTRIC CO
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products