Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Municipal solid waste fuel steam generator with waterwall furnace platens

a technology of solid waste fuel and furnace plate, which is applied in the direction of water-tube boilers, corrosion-reducing boiler components, lighting and heating apparatus, etc., can solve the problems of high material demands on the superheater in these extreme temperatures, inability to increase the size of the furnace adequately, and inability to meet the requirements of superheaters, etc., to reduce the furnace exit gas temperature, reduce the corrosion of the superheater, and facilitate heat transfer

Inactive Publication Date: 2011-05-26
COLE ARTHUR W +4
View PDF30 Cites 4 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0010]To achieve these and other advantages and in accordance with the purpose of the invention, as embodied herein, the invention includes a steam generator including a furnace configured and adapted to generate a stream of combustion gases from combustion of municipal solid waste fuel. The steam generator also includes at least one superheater disposed within an upper portion of the furnace, downstream of a combustion zone, or proximate a backpass of the furnace. The superheater is configured and adapted to superheat fluids within the superheater by facilitating heat transfer between fluids within the superheater and furnace exit gases outside the superheater. At least one waterwall furnace platen is disposed within the furnace upstream from the superheater. The waterwall furnace platen is configured and adapted to lower furnace exit gas temperature at the superheater by facilitating heat transfer between fluids within the waterwall furnace platen and furnace exit gases outside the waterwall furnace platen.
[0011]In accordance with another aspect of the invention, at least one superheater and waterwall furnace platen are preferably in fluid communication with each other as part of a thermal hydraulic circuit. In another preferred embodiment, the waterwall furnace platen(s) are positioned within the furnace to allow maintenance access to the superheater. The waterwall furnace platen(s) can further include mechanical means operably connected to the waterwall furnace platen(s) to vibrate during operation and reduce residue build-up on exterior surfaces of the platen(s). It is also contemplated that the waterwall furnace platen(s) can include a piping header expansion loop configured and adapted to accommodate for thermal expansion and flexing of external supply headers.
[0016]The invention further includes a system for generating steam in a thermal hydraulic circuit of a municipal solid waste fuel steam generator. The system includes at least one superheater configured and adapted to facilitate heat transfer between fluids within the superheater and furnace exit gases outside the superheater. A drum is in fluid communication with the superheater for separating vapor and liquid to supply saturated steam to the superheater. At least one waterwall furnace platen is in fluid communication with the drum. The waterwall furnace platen is configured and adapted to lower furnace exit gas temperature at the superheater by facilitating heat transfer between fluids within the waterwall furnace platen and furnace exit gases outside the superheater. The waterwall furnace platen includes a corrosion resistant overlay disposed on an outer surface of the waterwall furnace platen.
[0017]It is further contemplated that the invention also includes a method of reducing corrosion of superheaters in municipal solid waste fuel steam generators. The method includes providing a waterwall furnace platen upstream of a superheater, wherein the waterwall furnace platen is configured and adapted to lower furnace exit gas temperature at the superheater by facilitating heat transfer between fluids within the waterwall furnace platen and furnace exit gases outside the waterwall furnace platen. The method also includes circulating a fluid through a bank of tubes in the waterwall furnace platen to cool a stream of furnace exit gases outside the superheater.
[0018]A method of retrofitting a municipal solid waste fuel steam generator to reduce corrosion of a superheater is also contemplated in accordance with the invention. The method includes providing a waterwall furnace platen configured and adapted to lower furnace exit gas temperature at a superheater in a municipal solid waste fuel steam generator by facilitating heat transfer between fluids within the waterwall furnace platen and furnace exit gases outside the superheater. An access is opened through the upper furnace roof of the steam generator and at least one furnace wall. The waterwall furnace platen is mounted through the upper furnace roof and at least one furnace wall. The method also includes operably connecting the waterwall furnace platen to a drum of the steam generator.
[0019]The method of retrofitting can further include measuring temperatures within an existing municipal solid waste fuel steam generator, wherein the step of providing a waterwall furnace platen includes configuring the waterwall furnace platen to reduce corrosion of the superheater based on the temperatures measured in the existing municipal solid waste fuel steam generator.

Problems solved by technology

The material demands on the superheater in these extreme temperatures are great.
In municipal solid waste fuel steam generators, however, the combustion gases at the superheater are much more corrosive than in steam generators using coal and other fuels.
This leads to the need for frequent repair or replacement of the superheater, which results in downtime.
However, in order to reduce corrosion of superheaters in existing facilities, it is impractical and extremely difficult to increase the size of the furnace adequately due to space limitations.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Municipal solid waste fuel steam generator with waterwall furnace platens
  • Municipal solid waste fuel steam generator with waterwall furnace platens
  • Municipal solid waste fuel steam generator with waterwall furnace platens

Examples

Experimental program
Comparison scheme
Effect test

Embodiment Construction

[0027]Reference will now be made in detail to the present preferred embodiments of the invention, examples of which are illustrated in the accompanying drawings. The method and corresponding steps of the invention will be described in conjunction with the detailed description of the system. The devices and methods presented herein may be used for reducing the corrosion of superheaters in municipal solid waste fuel steam generators. The present invention is well suited to decrease furnace exit gas temperature and improve furnace gas flow distribution.

[0028]Referring to the Figures generally, wherein like numerals designate the same element throughout the several drawings, FIG. 1 shows a cross-sectional side elevation view of an exemplary embodiment of a steam generator for generating steam from combusting municipal solid waste as fuel in accordance with the invention, which is designated 100. Other embodiments of a steam generator in accordance with the invention, or aspects thereof,...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

No PUM Login to View More

Abstract

A steam generator includes a furnace configured and adapted to generate a stream of furnace exit gases from the combustion of municipal solid waste fuel. At least one superheater is disposed within an upper portion of the furnace or backpass. The superheater is configured and adapted to superheat fluids within the superheater by facilitating heat transfer between fluids within the superheater and furnace exit gases outside the superheater. At least one waterwall furnace platen is disposed within the furnace upstream from the superheater, the waterwall furnace platen is configured and adapted to lower furnace exit gas temperature at the superheater by facilitating heat transfer between fluids within the waterwall furnace platen and furnace exit gases outside the waterwall furnace platen.

Description

CROSS-REFERENCE TO RELATED APPLICATION[0001]This application is a divisional of U.S. patent application Ser. No. 11 / 961,654, field Dec. 20, 2007 which claims benefit of priority from U.S. Provisional Application Ser. No. 60 / 976,709, filed Oct. 1, 2007, the disclosures of which are incorporated by reference herein in their entireties.BACKGROUND OF THE INVENTION[0002]1. Field of the Invention[0003]The present invention relates to a municipal solid waste fuel steam generator. Particularly, the present invention is directed to a municipal solid waste fuel steam generator having waterwall furnace platens.[0004]2. Description of Related Art[0005]Waste-to-energy or Energy-from-waste plants generate high-energy steam in boilers by combusting waste materials. Municipal solid waste fuel steam generators use solid municipal waste, such as refuse, as fuel to generate steam. The steam is commonly used to drive high-pressure steam turbines in order to generate electricity or provide steam to a st...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
Patent Type & Authority Applications(United States)
IPC IPC(8): F22B37/10
CPCF22B37/025F22B37/108Y02E20/12F22G3/008F22G7/14F22B37/48
Inventor COLE, ARTHUR W.FAIA, ROBERTKELLY, THOMASPERSSON, JOHNZONE, JR., FRANK J.
Owner COLE ARTHUR W
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products