Spherical organic polymer-silicon compound composite particles, hollow particles and their production methods
a technology of organic polymer and compound, applied in silicon compounds, natural mineral layered products, cellulosic plastic layered products, etc., can solve the problems of not being able to obtain particles, affecting the degree of agglomeration, and unclear whether organic polymer covered with inorganic oxide can be decomposed by such a method, etc., to achieve low degree of agglomeration and high roundness
- Summary
- Abstract
- Description
- Claims
- Application Information
AI Technical Summary
Benefits of technology
Problems solved by technology
Method used
Examples
example 1
[0070]Into a separable flask having a capacity of 300 mL, 200 mL of distilled water and 1 g of sodium dodecyl sulfate (SDS) were added, followed by stirring while a nitrogen gas was bubbled. After a lapse of 30 minutes while bubbling and stirring were continued, 20 g of styrene was added, and heating was started. When the water temperature reached 80° C., bubbling was terminated, and 0.4 g of potassium persulfate (KPS) dissolved in 10 mL of distilled water was added. The mixture was held at 80° C. for 20 minutes while stirring was continued, 1.5 g of methacryloxypropyltrimethoxysilane (silane coupling agent) was added, and the mixture was held at 70° C. for 3 hours while stirring was continued.
[0071]600 mL of ethanol was added to 200 mL of the obtained emulsion, crossflow ultrafiltration was carried out using an ultrafiltration filter (made of polyether sulfone, molecular cutoff: 30,000, manufactured by SARTORIUS K.K., VIVAFLOW 200), the filtrate was discharged until the amount of t...
example 8
[0095]Spherical organic polymer-silicon compound composite particles wherein the organic polymer was polystyrene were prepared in the same manner as in Example 1, whereupon the average particle size was 52 nm, the thickness of the silicon compound covering layer (shell) was 5 nm, the average roundness of the particles was 0.95, and the change in the average particle size as between before and after covering with the silicon compound was +12 nm. Further, in the same manner as in Example 1, the medium of the liquid was changed to water to prepare a liquid containing about 20 g of core-shell composite particles in 200 mL. 1,000 mL (50 mL per 1 g of the composite particles) of nitric acid having a concentration of 70% was gradually added to the liquid. Then, the liquid was heated by an infrared heater set at 150° C. and heated for 1 hour in a state where NO2 (brown gas) was emitted. Partial decomposition of the organic polymer was confirmed by the change of the liquid color from white t...
example 9
[0103]The dispersion of the aqueous slurry obtained in Example 1 was put in an autoclave and subjected to pressurized hot water treatment under a pressure of 1 MPa at a temperature of 180° C. for 1 hour. After cooling, dispersion was carried out by an ultrasonic homogenizer (450D manufactured by Branson Ultrasonics Division of Emerson Japan, Ltd.). After the dispersion, part of the slurry was dried, and optional 100 particle images were selected from a photograph of particle images enlarged by a transmission electron microscope and their diameters were measured to calculate the average particle size, whereupon it was 50 nm. The thicknesses of the shells of such hollow particles were directly measured on the photograph to determine the average value, whereupon it was 6 nm. Further, the average roundness of the hollow particles measured by an image analyzer using a copy having outlines of such particle images copied on paper was 0.94. The average particle size was measured by a dynami...
PUM
Property | Measurement | Unit |
---|---|---|
thickness | aaaaa | aaaaa |
particle size | aaaaa | aaaaa |
temperature | aaaaa | aaaaa |
Abstract
Description
Claims
Application Information
- R&D Engineer
- R&D Manager
- IP Professional
- Industry Leading Data Capabilities
- Powerful AI technology
- Patent DNA Extraction
Browse by: Latest US Patents, China's latest patents, Technical Efficacy Thesaurus, Application Domain, Technology Topic, Popular Technical Reports.
© 2024 PatSnap. All rights reserved.Legal|Privacy policy|Modern Slavery Act Transparency Statement|Sitemap|About US| Contact US: help@patsnap.com