Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Phosphorus-sulfur FR additives and polymer systems containing same

Inactive Publication Date: 2008-06-26
DOW GLOBAL TECH LLC
View PDF11 Cites 10 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0007]Compounds according to structure (I) often exhibit a highly useful and surprising combination of properties, including in many cases a very low mammalian toxicity and excellent hydrolytic and thermal stability. Their thermal stability permits them to be incorporated into high temperature polymer formulation and processing operations. Unexpectedly, many of these materials have been found to offer outstanding flame retardancy performance when formulated in a variety of polymers and polymer foam structures, especially in poly(vinyl aromatic) types of foam.

Problems solved by technology

These compounds tend to provide moderate ignition resistance, and are generally not as effective as hexabromocyclododecane or other brominated FR additives.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Phosphorus-sulfur FR additives and polymer systems containing same
  • Phosphorus-sulfur FR additives and polymer systems containing same
  • Phosphorus-sulfur FR additives and polymer systems containing same

Examples

Experimental program
Comparison scheme
Effect test

example 1

[0065]To a stirred solution of 5,5-dimethyl-2-thioxo-[1,3,2]dioxaphosphorinane-2-thiol (10.0 g, 50 mmol) in toluene (70 mL) is added triethylamine (5.0 g, 50 mmol), to form the trimethylammonium salt. The mixture is warmed to 45° C. To the resulting mixture is added 1,4-dibromobut-2-ene (5.34 g, 25 mmol) and the mixture is heated at reflux for 1 hour. The solution is then washed with saturated aqueous sodium bicarbonate solution (50 mL), dried over anhydrous magnesium sulfate and concentrated under reduced pressure to yield a white solid. The crude product is slurried in ethanol (40 mL) and filtered to yield 8.7 g (80%) of a white solid, 2,2′-[2-butene-1,4-diylbis(methylthio)]bis[5,5-dimethyl-1,3,2-dioxaphosphorinane]-2,2′-disulfide, having the structure:

[0066]The thermal stability of the 2,2′-[2-butene-1,4-diylbis(methylthio)]bis[5,5-dimethyl-1,3,2-dioxaphosphorinane]-2,2′-disulfide is evaluated by thermogravimetric analysis as described before. The sample exhibits a 5% WLT of 241°...

example 2

[0071]A mixture of N,N-diethylethanaminium, 5,5-dimethyl-1,3,2-dioxaphosphorinane-2-thiolate-2-oxide (7.5 g, 27 mmol) and 1,4-dibromobutene (2.84 g, 13.2 mmol) is slurried in 50 mL of ethanol and refluxed for 5 hours. The reaction mixture is cooled and concentrated under reduced pressure. The resulting residue is dissolved in methylene chloride (100 mL), washed with water (40 mL), dried and concentrated to yield 3.60 g (66%) of white solid, 2,2′-[2-butene-1,4-diylbis(methylthio)]bis[5,5-dimethyl-1,3,2-dioxaphosphorinane]-2,2′-dioxide, having the structure:

[0072]The 5% WLT for this material is 255° C. Plaques made from a blend of 4% of the product in 96% polystyrene have an LOI of 22% and an FP-7 value of 5.7 s.

example 3

[0073]To a stirred solution of the ammonium salt of dithiophosphoric acid O,O-diethyl ester (15.8 g, 78 mmol) in ethanol (130 mL) at 80° C. is added 1,4-dibromo-2-butene (7.55 g, 35 mmol) in portions. The resulting mixture is cooled, diluted with water (150 mL) and extracted with methylene chloride (3×100 mL). The organic layer is dried over anhydrous magnesium sulfate, filtered and concentrated under reduced pressure to yield 15 g (99%) of S-[4-(diethoxy-thiophosphorylsulfanyl)-but-2-enyl]dithiophosphoric acid O,O′-diethyl ester, having the structure:

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

PropertyMeasurementUnit
Percent by massaaaaaaaaaa
Structureaaaaaaaaaa
Weightaaaaaaaaaa
Login to View More

Abstract

Phosphorus-sulfur compounds have flame retardant activity in organic polymer systems. The phosphorus-sulfur compounds can be represented by the structure:wherein X is oxygen or sulfur, T is a covalent bond, oxygen, sulfur or nitrogen, provided that at least one of X and T is sulfur, each X′ is independently oxygen or sulfur, each m is independently zero or 1 when X′ is oxygen and zero, 1 or 2 when X′ is sulfur, n is at least 1 and preferably at least 2, each R is independently an unsubstituted or inertly substituted hydrocarbyl group or the R groups together form an unsubstituted or inertly substituted divalent organic group and A is an organic linking group.

Description

CROSS-REFERENCE TO RELATED APPLICATION[0001]This application claims priority from U.S. Provisional Patent Application No. 60 / 876,787, filed 21 Dec. 2006.BACKGROUND OF THE INVENTION[0002]The present invention relates to flame retardant additives for organic polymers, and in particular phosphorus-sulfur flame suppressant additives.[0003]Flame suppressant additives are commonly added to polymer products used in construction, automotive, electronic, electrical laminate, wire and cable, textile and other applications. FR additives increase the limiting oxygen index (LOI) of polymer systems, allowing articles made from those polymer systems to pass standard fire tests. Various low molecular weight (<˜1500 g / mol) brominated compounds are used as FR additives for organic polymers. Many of these, such as hexabromocyclododecane and polybrominated diphenylethers, are under regulatory and public pressure that may lead to restrictions on their use, and there is an incentive to find a replacem...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
IPC IPC(8): C08K5/5398C08K5/51C07F9/6571
CPCC07F9/1653C07F9/173C08K5/5398C07F9/657154C07F9/657181C07F9/657136
Inventor SHANKAR, RAVI B.KRUPER, WILLIAM J.WILSON, DAVID R.KING, BRUCE A.HUDACK, MICHELLE L.MURRAY, DANIEL J.WANG, CHUNSTOBBY, WILLIAM GERALDMORGAN, TED A.BEACH, MARK W.BEULICH, INKENHU, ING FENG
Owner DOW GLOBAL TECH LLC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products