Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Methods of administering dalbavancin for treatment of skin and soft tissue infections

a technology of dalbavancin and composition, applied in the field of dalbavancin composition, can solve the problems of life-threatening, limited treatment options for severe infections caused by some of these pathogens, and less frequent dosing, and achieve the effect of reducing adverse side effects

Inactive Publication Date: 2005-02-10
CAVALERI MARCO +6
View PDF23 Cites 9 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

In another aspect, methods are provided for treating a bacterial infection in an individual in need thereof, including administering at least one unit dose of dalbavancin in an amount sufficient to provide a therapeutically effective plasma level of dalbavancin in the individual for at least five days, and a pharmaceutically acceptable carrier. A therapeutically effective plasma level of dalbavancin is generally at least about 4 mg of dalbavancin per liter of plasma. In one embodiment, the dosage amount of dalbavancin administered is an amount that is clinically effective and also has reduced adverse side effects in comparison to the standard of care with drugs such as teicoplanin and vancomycin.

Problems solved by technology

Catheter-related bloodstream infections occur when bacteria enter the bloodstream through an intravenous catheter and can be life threatening.
The coagulase-positive species methicillin-resistant Staphylococcus aureus (MRSA) has long been problematic in both community-acquired and nosocomial infections, and several coagulase-negative staphylococci have been recognized as opportunistic human pathogens, especially in the treatment of critically ill patients in intensive care units.
Currently, the therapeutic options for severe infections caused by some of these pathogens is quite limited.
Further, even when an antibiotic exhibits a suitable pharmaceutical window, less frequent dosing is possible only if the antibiotic exhibits a suitable serum half-life to maintain therapeutic effectiveness over the dosing interval desired.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Methods of administering dalbavancin for treatment of skin and soft tissue infections
  • Methods of administering dalbavancin for treatment of skin and soft tissue infections
  • Methods of administering dalbavancin for treatment of skin and soft tissue infections

Examples

Experimental program
Comparison scheme
Effect test

example 1

Efficacy and Safety of once Weekly Dalbavancin in Deep Skin and Soft Tissue Infections

This randomized, controlled study evaluated the safety and efficacy of two dose regimens of dalbavancin. Adult patients with skin and soft tissue infections (SSTI) involving deep skin structures or requiring surgical intervention were randomized to three groups: Study arm 1 received 1100 mg of dalbavancin via intravenous injection (IV) on day 1; Study arm 2 received 1 g of dalbavancin IV on day 1 and 500 mg of dalbavancin IV on day 8; Study arm 3 received “standard of care.” Clinical and microbiological response and adverse events were assessed.

Populations for Analysis

There were 62 patients randomized into the study; all received at least one dose of study medication. Four study populations were evaluated for safety and efficacy and were defined as follows: The intent-to-treat (ITT) population included all patients who received at least one dose of study drug (all randomized study subjects)....

example 2

Pharmacokinetics and Renal Excretion of Dalbavancin in Healthy Subjects

The primary objectives of this study were to characterize the pharmacokinetics of dalbavancin and to calculate the extent of renal excretion in healthy subjects receiving a therapeutic dose of the drug. This was an open label, non-comparative, study.

Study Drug Treatment

Healthy male or female subjects between 18 and 65 years of age were administered a single 1000 mg IV dose of dalbavancin infused over 30 minutes.

Six subjects, one female and five male, were enrolled, received study medication, and completed all aspects of the study. Three subjects were Caucasian and three subjects were African-American. Mean age was 29.8 years (range 22 to 63). Mean height was 68.6 inches (range 63 to 75) and mean weight was 179.6 lbs (140 to 244).

Pharmacokinetics

Blood and urine (24-hr collections) were collected on study days 1, 2, 3, 4, 5, 6, 7, 14, 21, 28, and 42. Blood samples were drawn into heparinized tubes and ...

example 3

Protein Binding of Dalbavancin Using Isothermal Titration Microcalorimetry

Binding of dalbavancin to proteins was measured by isothermal titration microcalorimetry (ITC) in 20 mM phosphate, 150 mM NaCI, pH 7.4 at 25 and 37° C. using a Microcal VP-ITC instrument. In a typical experiment, 25×10 μl of protein (˜150 μM) was injected into a calorimeter cell containing dalbavancin solution (˜5 μM). Actual protein and dalbavancin concentrations were determined by measuring absorbence at 280 nm. Control experiments included injections of protein into buffer (in the absence of dalbavancin) to account for the heats of dilution of protein under identical conditions. For comparison, similar experiments with some necessary modifications were performed using teicoplanin.

Experiments with dalbavancin were conducted with each of the following proteins: human albumin; dog albumin; rat albumin; bovine albumin; and human α-glycoprotein. Teicoplanin was studied with human albumin and α-glycoprotein....

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

PropertyMeasurementUnit
resistanceaaaaaaaaaa
lengthaaaaaaaaaa
plasmaaaaaaaaaaa
Login to View More

Abstract

The invention provides methods and compositions for treatment of bacterial infections. Methods of the invention include administration of dalbavancin for treatment of a bacterial infection, in particular an uncomplicated Gram-positive bacterial infection of skin and soft tissue. Dosing regimes include once weekly administration of dalbavancin, which often remains at therapeutic levels in the bloodstream for at least one week, providing prolonged therapeutic action against a bacterial infection.

Description

FIELD OF THE INVENTION This application relates to dalbavancin compositions and methods of use of such compositions in methods of treatment of bacterial infections. BACKGROUND OF THE INVENTION According to the U.S. Center for Disease Control and Prevention, nosocomial bloodstream infections are a leading cause of death in the United States. Approximately five percent of the seven million central venous catheters (CVCs) inserted annually in the United States are associated with at least one episode of bloodstream infection (approximately 350,000 a year). Catheter-related bloodstream infections occur when bacteria enter the bloodstream through an intravenous catheter and can be life threatening. Skin and soft tissue infections (SSTIs) are a common medical condition and often the consequence of trauma or surgical procedures. Staphylococcus aureus and Streptococcus pyogenes are the pathogens most frequently isolated from patients with deep tissue infections, although any pathogenic o...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
Patent Type & Authority Applications(United States)
IPC IPC(8): A61K31/70A61K31/704A61K38/12A61K38/14A61P31/04
CPCA61K31/70A61K31/704A61K38/00A61K38/14A61K2300/00A61P31/00A61P31/04
Inventor CAVALERI, MARCOJABES, DANIELAHENKEL, TIMOTHYMALABARBA, ADRIANOMOSCONI, GIORGIOSTOGNIEW, MARTINWHITE, RICHARD J.
Owner CAVALERI MARCO
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products