tio 2 Doped material and its preparation method and application
A technology of doping material and perovskite, applied in the field of solar cells, can solve problems such as hindering the improvement of cell efficiency, inability to absorb near-infrared light, and large energy loss of incident light, so as to improve cell conversion efficiency, expand the spectral response range, The effect of even size distribution
- Summary
- Abstract
- Description
- Claims
- Application Information
AI Technical Summary
Problems solved by technology
Method used
Image
Examples
Embodiment 1
[0044] Example 1. TiO 2 Preparation of doped materials
[0045] (1) Preparation of solution A: 0.5 ml of tetrabutyl titanate and 0.15 ml of acetylacetone were mixed and stirred for 1 hour, and then 7 ml of isopropanol was added.
[0046] (2) Preparation of solution B: Add 0.03ml of nitric acid and 0.07ml of deionized water into 2.7ml of isopropanol, mix and stir for 1 hour.
[0047] (3) Add solution B dropwise to solution A, and magnetically stir for 7 hours to obtain light yellow TiO 2 Precursor solution C.
[0048] (4) Er(NO 3 ) 3 ·5H 2 O, Yb(NO 3 ) 3 ·5H 2 O and LiNO 3 Add solution C to obtain mixed solution D, so that the molar ratios of Er, Yb, Li and Ti in the mixed solution are 0.5:100, 10:100, and 20:100, respectively. Stir magnetically for 2h to dissolve completely.
[0049] (5) Remove the solvent and dry the solution D at 100° C. for 12 hours. Then anneal at 500°C for 30 minutes (can be selected between 30 and 90 minutes) to obtain TiO 2 doped material. ...
Embodiment 2
[0052] Embodiment 2. Preparation of perovskite solar cells
[0053] (1) Cleaning the conductive glass (FTO): put the conductive glass in acetone, isopropanol and ethanol in sequence, ultrasonically clean it for 30 minutes each, and then irradiate it with UV for 20 minutes.
[0054] (2) Add 350 μl of isopropyl titanate to 5 ml of absolute ethanol, then add a small amount of HCl (concentration: 0.013M), mix and stir for 2 hours to obtain a dense layer precursor solution. Then the precursor solution was spin-coated on the FTO at a speed of 2000 rpm, and annealed at 500° C. for 30-60 min to obtain a conductive glass with a dense layer.
[0055] (3) TiO 2 The slurry (Dyesol 30NR-D) was diluted with absolute ethanol (1:6, mass ratio), and the diluted TiO 2 The slurry is spin-coated on the dense layer at a speed of 4000 rpm, and annealed at 450° C. for 30 minutes (30 to 60 minutes can be selected) to obtain a conductive glass with a mesoporous layer.
[0056] (4) The above prepare...
Embodiment 3-5
[0066] Example 3-5. TiO 2 Preparation of doped materials
[0067] Prepare TiO by the same method as in Example 1 2 The difference of the doping material is that in step (4), the molar ratios of Er, Yb, Li and Ti are respectively 0.5:10:X:100, wherein X is 0, 15, 20 or 25 respectively.
[0068] In step (5), when X is 0, 15, 20 or 25, the solution D is desolvated and dried for 12 hours at 80° C., 90° C., and 120° C. respectively. Then anneal at 450°C, 480°C, and 550°C for 40, 60, and 120 minutes to obtain TiO 2 doped material.
[0069] For the TiO prepared above 2 Doping material, and the TiO prepared in embodiment 1 2 The doped material was analyzed and the results were as follows Figure 5 as shown, Figure 5 are different Li + Doping concentration TiO 2 The up-conversion luminescence diagram of the doped material (Er:Yb:Li:Ti=0.5:10:x:100, x=0,15,20,25), the excitation light source is a 980nm laser. Thanks to Li + The addition of TiO 2 The up-conversion luminescen...
PUM
Property | Measurement | Unit |
---|---|---|
thickness | aaaaa | aaaaa |
Abstract
Description
Claims
Application Information
- R&D Engineer
- R&D Manager
- IP Professional
- Industry Leading Data Capabilities
- Powerful AI technology
- Patent DNA Extraction
Browse by: Latest US Patents, China's latest patents, Technical Efficacy Thesaurus, Application Domain, Technology Topic, Popular Technical Reports.
© 2024 PatSnap. All rights reserved.Legal|Privacy policy|Modern Slavery Act Transparency Statement|Sitemap|About US| Contact US: help@patsnap.com