Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

32results about How to "Prevent over-pressurization" patented technology

Compressed Gas Regulator Apparatus

Regulators for regulating gas that is delivered in discrete charges from a tank that contains compressed gas to a paintball gun, marker, or other application that utilizes or is activated by pressure controlled discrete charges of gas. The regulator has holding, discharge, and fill configurations, controlled by the movement of a piston member in a pressurized chamber, and the activation of a poppet valve on the discharge of the system. One or two low side pressure relief members are provided to prevent the over-pressurization of the pressurized chamber. An externally threaded sleeve member is non-rotatably, but axially slidably received on a distal portion of the body of the regulator so that the sleeve member and distal portion may be axially slidably disengaged, and the regulator can be rotationally positioned so that the pressure gauge is easily viewed by an operator.
Owner:LEHR IP LLC

Automated balloon catheter fluid purging system

ActiveUS20150080794A1Optimizes gas escape pathReduces balloon fluid resistanceBalloon catheterOperating means/releasing devices for valvesExhaust valveSolenoid valve
A fluid purging system has a spring-energized relief valve having an inlet port that is coupled to a fluid chamber to receive incoming fluid, and an outlet port through which incoming fluid is relieved. The outlet port is fluidly coupled to a pressurized chamber. The fluid purging system also includes an electro-mechanical pressure switch, and an electrically operated solenoid valve which functions as a pressure exhaust valve. The pressure switch and the solenoid valve are in fluid communication with the pressurized chamber.
Owner:CRYOFOCUS MEDTECH (SHANGHAI) CO LTD

Vapor compression systems using an accumulator to prevent over-pressurization

An accumulator acts as a buffer to prevent over-pressurization of the vapor compression system while inactive. By determining the maximum storage temperature and the maximum storage pressure a system will be subject to when inactive, a density of the refrigerant for the overall system can be calculated. Dividing the density by the mass of the refrigerant determines an optimal overall system volume. The volume of the components is subtracted from the overall system volume to calculate the optimal accumulator volume. The optimal accumulator volume is used to size the accumulator so that the accumulator has enough volume to prevent over-pressurization of the system when inactive.
Owner:CARRIER CORP

Vapor compression systems using an accumulator to prevent over-pressurization

An accumulator acts as a buffer to prevent over-pressurization of the vapor compression system while inactive. By determining the maximum storage temperature and the maximum storage pressure a system will be subject to when inactive, a density of the refrigerant for the overall system can be calculated. Dividing the density by the mass of the refrigerant determines an optimal overall system volume. The volume of the components is subtracted from the overall system volume to calculate the optimal accumulator volume. The optimal accumulator volume is used to size the accumulator so that the accumulator has enough volume to prevent over-pressurization of the system when inactive.
Owner:SIENEL TOBIAS H +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products