Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

9807results about "Inductances" patented technology

Wireless non-radiative energy transfer

The electromagnetic energy transfer device includes a first resonator structure receiving energy from an external power supply. The first resonator structure has a first Q-factor. A second resonator structure is positioned distal from the first resonator structure, and supplies useful working power to an external load. The second resonator structure has a second Q-factor. The distance between the two resonators can be larger than the characteristic size of each resonator. Non-radiative energy transfer between the first resonator structure and the second resonator structure is mediated through coupling of their resonant-field evanescent tails.
Owner:MASSACHUSETTS INST OF TECH

Contact-less power transfer

A system and method for transferring power does not require direct electrical conductive contacts. There is provided a primary unit having a power supply and a substantially laminar surface having at least one conductor that generates an electromagnetic field when a current flows therethrough and having an active area defined within a perimeter of the surface, the at least one conductor being arranged such that electromagnetic field lines generated by the at least one conductor are substantially parallel to the plane of the surface within the active area; and at least one secondary device including at least one conductor that may be wound about a core; wherein the active area has a perimeter large enough to surround the conductor or core of the at least one secondary device in any orientation thereof substantially parallel to the surface of the primary unit in the active area, such that when the at least one secondary device is placed on or in proximity to the active area in a predetermined orientation, the electromagnetic field induces a current in the at least one conductor of the at least one secondary device.
Owner:PHILIPS IP VENTURES BV

Printed circuit board coil

A multilayer printed circuit board (“PCB”) coil that simulates a coil formed from litz wire. The PCB includes a plurality of alternating conductor and insulating layers interconnected to cooperatively form the coil. Each conductor layer includes a trace that follows the desired coil shape and is divided into a plurality of discrete conductor segments. The segments are electrically connected across layers to provide a plurality of current flow paths (or filaments) that undulate between the layers in a regular, repeating pattern. The coil may be configured so that each filament spends a substantially equal amount of time in proximity to the paired coil and therefore contributes substantially equally to the self or mutual inductance of the coil. Each conductor layer may include a plurality of associated traces and intralayer connector that interconnected so that each filament undulates not only upwardly / downwardly, but also inwardly / outwardly in a regular, repeating pattern.
Owner:PHILIPS IP VENTURES BV

Portable contact-less power transfer devices and rechargeable batteries

There is disclosed a system and method for transferring power without requiring direct electrical conductive contacts. There is provided a primary unit having a power supply and a substantially laminar charging surface having at least one conductor that generates an electromagnetic field when a current flows therethrough and having an charging area defined within a perimeter of the surface, the at least one conductor being arranged such that electromagnetic field lines generated by the at least one conductor are substantially parallel to the plane of the surface or at least subtend an angle of 45° or less to the surface within the charging area; and at least one secondary device including at least one conductor that may be wound about a core. Because the electromagnetic field is spread over the charging area and is generally parallel or near-parallel thereto, coupling with flat secondary devices such as mobile telephones and the like is significantly improved in various orientations thereof.
Owner:PHILIPS IP VENTURES BV

Protective enclosure for electronic device

A protective enclosure for an electronic device such as a laptop computer or tablet computer that comprises a shell that is capable of enclosing and substantially surrounding the electronic device. The shell is substantially watertight, substantially rigid and substantially crush-resistant. The inside of the shell has a hook and loop liner with shock absorbing corner bumpers having hook and loop type bases so that the bumpers may attach at any point on the liner inside the shell to accommodate electronic devices of various sizes and to secure the device inside the enclosure in a shock absorbent suspended manner. The shell may further comprise a USB connector hub for connection to the USB port of a laptop computer or PC tablet enclosed in the protective shell.
Owner:OTTER PRODS

Wireless non-radiative energy transfer

The electromagnetic energy transfer device includes a first resonator structure receiving energy from an external power supply. The first resonator structure has a first Q-factor. A second resonator structure is positioned distal from the first resonator structure, and supplies useful working power to an external load. The second resonator structure has a second Q-factor. The distance between the two resonators can be larger than the characteristic size of each resonator. Non-radiative energy transfer between the first resonator structure and the second resonator structure is mediated through coupling of their resonant-field evanescent tails.
Owner:MASSACHUSETTS INST OF TECH

Wireless non-radiative energy transfer

The electromagnetic energy transfer device includes a first resonator structure receiving energy from an external power supply. The first resonator structure has a first Q-factor. A second resonator structure is positioned distal from the first resonator structure, and supplies useful working power to an external load. The second resonator structure has a second Q-factor. The distance between the two resonators can be larger than the characteristic size of each resonator. Non-radiative energy transfer between the first resonator structure and the second resonator structure is mediated through coupling of their resonant-field evanescent tails.
Owner:MASSACHUSETTS INST OF TECH

Wireless non-radiative energy transfer

The electromagnetic energy transfer device includes a first resonator structure receiving energy from an external power supply. The first resonator structure has a first Q-factor. A second resonator structure is positioned distal from the first resonator structure, and supplies useful working power to an external load. The second resonator structure has a second Q-factor. The distance between the two resonators can be larger than the characteristic size of each resonator. Non-radiative energy transfer between the first resonator structure and the second resonator structure is mediated through coupling of their resonant-field evanescent tails.
Owner:MASSACHUSETTS INST OF TECH

Inductively coupled ballast circuit

A ballast circuit is disclosed for inductively providing power to a load. The ballast circuit includes an oscillator, a driver, a switching circuit, a resonant tank circuit and a current sensing circuit. The current sensing circuit provides a current feedback signal to the oscillator that is representative of the current in the resonant tank circuit. The current feedback signal drives the frequency of the ballast circuit causing the ballast circuit to seek resonance. The ballast circuit preferably includes a current limit circuit that is inductively coupled to the resonant tank circuit. The current limit circuit disables the ballast circuit when the current in the ballast circuit exceeds a predetermined threshold or falls outside a predetermined range.
Owner:PHILIPS IP VENTURES BV

Wireless energy transfer for vehicles

A vehicle powering wireless receiver for use with a first electromagnetic resonator coupled to a power supply. The wireless receiver includes a load configured to power the drive system of a vehicle using electrical power, and a second electromagnetic resonator adapted to be housed upon the vehicle and configured to be coupled to the load, wherein at least one of the first electromagnetic resonator and the second electromagnetic resonator is variable in size, and wherein the second electromagnetic resonator is configured to be wirelessly coupled to the first electromagnetic resonator to provide resonant, non-radiative wireless power to the second electromagnetic resonator from the first electromagnetic resonator.
Owner:WITRICITY CORP

Inductively powered lamp assembly

A lamp assembly configured to inductively receive power from a primary coil. The inductively powered lamp assembly includes a lamp circuit including a secondary and a lamp connected in series. In a first aspect, the lamp circuit includes a capacitor connected in series with the lamp and the secondary to tune the circuit to resonance. The capacitor is preferably selected to have a reactance that is substantially equal to or slightly less than the reactance of the secondary and the impedance of the lamp. In a second aspect, the inductively powered lamp assembly includes a sealed transparent sleeve that entirely encloses the lamp circuit so that the transparent sleeve is fully closed and unpenetrated. The transparent sleeve is preferably the lamp sleeve itself, with the secondary, capacitor and any desired starter mechanism disposed within its interior.
Owner:PHILIPS IP VENTURES BV

Wireless charging system with device power compliance

A method of controlling an inductive charging system on those occasions in which the combined power requests of a plurality of secondary devices exceed the power capacity of the power supply. The method includes at least one of (a) powering each device at a level below its requested level, (b) powering each device sequentially, and / or (c) powering each device in a repetitive pattern (e.g. time multiplexing). Also disclosed is a method of controlling an inductive charging system at least partially as a function of information received from the power management unit (PMU) of each secondary device.
Owner:PHILIPS IP VENTURES BV

Inductively powered apparatus

InactiveUS20050122058A1Brightness of light can be controlledEfficiently receive powerLiquid separation auxillary apparatusPoint-like light sourcePower apparatusElectric power
An inductive power supply system for providing power to one or more inductively powered devices. The system includes a mechanism for varying the physical distance or the respective orientation between the primary coil and secondary coil to control the amount of power supplied to the inductively powered device. In another aspect, the present invention is directed to an inductive power supply system having a primary coil and a receptacle disposed within the magnetic field generated by the primary coil. One or more inductively powered devices are placed randomly within the receptacle to receive power inductively from the primary coil. The power supply circuit includes circuitry for adjusting the power supplied to the primary coil to optimize operation based on the position and cumulative characteristics of the inductively powered device(s) disposed within the receptacle.
Owner:PHILIPS IP VENTURES BV

Inductively powered apparatus

An inductive power supply system for providing power to one or more inductively powered devices. The system includes a mechanism for varying the physical distance or the respective orientation between the primary coil and secondary coil to control the amount of power supplied to the inductively powered device. In another aspect, the present invention is directed to an inductive power supply system having a primary coil and a receptacle disposed within the magnetic field generated by the primary coil. One or more inductively powered devices are placed randomly within the receptacle to receive power inductively from the primary coil. The power supply circuit includes circuitry for adjusting the power supplied to the primary coil to optimize operation based on the position and cumulative characteristics of the inductively powered device(s) disposed within the receptacle.
Owner:PHILIPS IP VENTURES BV

Wireless charging systems and methods

An embodiment of a system for wirelessly charging a wrist-worn device may include a radio frequency (RF) charging energy generating element, and an antenna configured to radiate the RF charging energy, the antenna comprising a first coil and a second coil, the first coil and the second coil each comprising a plurality of windings, the windings of the first coil being wound in a direction opposite the direction of the windings of the second coil. An embodiment of a wrist-worn charge-receiving device may include an antenna coil adapted to receive radio frequency (RF) charging energy, the antenna coil comprising non-uniform windings; and a rechargeable power source coupled to the antenna coil, the antenna coil adapted to provide the RF charging energy to the rechargeable power source.
Owner:QUALCOMM INC

Contact-less power supply, contact-less charger systems and method for charging rechargeable battery cell

ActiveUS20090033280A1Effectively transmits induced electromotive forceReduce energy wasteNear-field transmissionTransformersCoil arrayRechargeable cell
The present invention relates to a contact-less power supply magnetically coupled to a battery device having a receiving coil therein, for contact-less charging the battery device, the contact-less power supply having a sending coil array including a plurality of sending coils for inducing a charging power to the receiving coil; and a driving means for detecting a sending coil magnetically coupled to the receiving coil and selectively driving only the detected sending coil.
Owner:LS CABLE & SYST LTD

Inductively powered apparatus

InactiveUS20050122059A1Brightness of light can be controlledEfficiently receive powerLiquid separation auxillary apparatusPoint-like light sourcePower apparatusElectric power
An inductive power supply system for providing power to one or more inductively powered devices. The system includes a mechanism for varying the physical distance or the respective orientation between the primary coil and secondary coil to control the amount of power supplied to the inductively powered device. In another aspect, the present invention is directed to an inductive power supply system having a primary coil and a receptacle disposed within the magnetic field generated by the primary coil. One or more inductively powered devices are placed randomly within the receptacle to receive power inductively from the primary coil. The power supply circuit includes circuitry for adjusting the power supplied to the primary coil to optimize operation based on the position and cumulative characteristics of the inductively powered device(s) disposed within the receptacle.
Owner:PHILIPS IP VENTURES BV

Sender transducer for wireless power transfer

A signal generator generates an electrical signal that is sent to an amplifier, which increases the power of the signal using power from a power source. The amplified signal is fed to a sender transducer to generate ultrasonic waves that can be focused and sent to a receiver. The receiver transducer converts the ultrasonic waves back into electrical energy and stores it in an energy storage device, such as a battery, or uses the electrical energy to power a device. In this way, a device can be remotely charged or powered without having to be tethered to an electrical outlet.
Owner:UBEAM

Method of manufacturing a lamp assembly

A lamp assembly configured to inductively receive power from a primary coil. The lamp assembly includes a lamp circuit including a secondary and a lamp connected in series. In a first aspect, the lamp circuit includes a capacitor connected in series with the lamp and the secondary to tune the circuit to resonance. The capacitor is preferably selected to have a reactance that is substantially equal to or slightly less than the reactance of the secondary and the impedance of the lamp. In a second aspect, the lamp assembly includes a sealed transparent sleeve that entirely encloses the lamp circuit so that the transparent sleeve is fully closed and unpenetrated. The transparent sleeve is preferably the lamp sleeve itself, with the secondary, capacitor and any desired starter mechanism disposed within its interior.
Owner:PHILIPS IP VENTURES BV

Receiver transducer for wireless power transfer

A signal generator generates an electrical signal that is sent to an amplifier, which increases the power of the signal using power from a power source. The amplified signal is fed to a sender transducer to generate ultrasonic waves that can be focused and sent to a receiver. The receiver transducer converts the ultrasonic waves back into electrical energy and stores it in an energy storage device, such as a battery, or uses the electrical energy to power a device. In this way, a device can be remotely charged or powered without having to be tethered to an electrical outlet.
Owner:UBEAM

Multi-use wireless power and data system

A wireless device is disclosed that includes an antenna system comprising at least one inductive element and two or more capacitive elements. A switching component configured to change a circuit configuration of the capacitive elements. A controller configured to transmit a signal using the antenna system and to receive a response from a first device, to determine a communications protocol associated with the first device and to change a configuration of the antenna system in response to the detected communications protocol by actuating the switching component.
Owner:TRIUNE IP

Receiver communications for wireless power transfer

A signal generator generates an electrical signal that is sent to an amplifier, which increases the power of the signal using power from a power source. The amplified signal is fed to a sender transducer to generate ultrasonic waves that can be focused and sent to a receiver. The receiver transducer converts the ultrasonic waves back into electrical energy and stores it in an energy storage device, such as a battery, or uses the electrical energy to power a device. In this way, a device can be remotely charged or powered without having to be tethered to an electrical outlet.
Owner:UBEAM

Point of sale inductive systems and methods

Systems and methods for the identification, powering and control of products and product packaging. The systems can include a point of sale display having a contactless power supply. The contactless power supply can provide a source of wireless power for products and product packaging. The products and product packaging can include light emitting diodes, e-ink displays and printed speaker circuits that activate as the operating frequency of the contactless power supply varies. Other embodiments include product level sensors, inductive reader networks, printed temperature sensors, product alignment systems, passive identification circuits and methods for controlling operation of the same.
Owner:BEIJING XIAOMI MOBILE SOFTWARE CO LTD

Modular pocket with inductive power and data

A modular pocket system includes a modularly mountable pocket modularly mountable to a tactical garment. An insert is mounted in the pocket to align and closely inductively couple a primary inductive coil and related primary drive circuits in the insert to a secondary inductive coil and related secondary charging circuits in a portable electronic device mountable into the insert for the inductively coupled transmission of power between the coils so to transmit power to the portable device, where the device has a rechargeable energy storage component electrically connected to the secondary inductive coil and secondary charging circuits.
Owner:CYNETIC DESIGNS

Transmitting antenna and transmitter for wireless power charging

The present invention has been made in an effort to overcome the disadvantage that a user has to consciously adjust the positions of a wireless power transmitter and a wireless power receiver. The transmitting antenna for wireless power charging, which wirelessly transmits power to charge a device, includes a first antenna coil section for producing a magnetic field in a first direction, and a second antenna coil section for producing a magnetic field in a second direction. Accordingly, the three-dimensional transmitting antenna can minimize decreases in efficiency caused by the position and direction of the receiver and maximize reception efficiency at a particular point or within a particular range.
Owner:KOREA ELECTRONICS TECH INST

Tool for an Industrial Robot

A robot or manipulator including a wireless power supply and a wireless communication device. One or more actuators on the robot tool may be wirelessly powered and wirelessly controlled. The robot tool may have one or more wireless communication members for transmission of data from sensors on the tool. The power supply includes a primary power supply member and secondary power supply member. Tool changes may be carried out automatically by the robot. In other aspects of the invention a method, a control system and a computer program for carrying out the method are described.
Owner:ABB RES LTD

Receiver communications for wireless power transfer

A signal generator generates an electrical signal that is sent to an amplifier, which increases the power of the signal using power from a power source. The amplified signal is fed to a sender transducer to generate ultrasonic waves that can be focused and sent to a receiver. The receiver transducer converts the ultrasonic waves back into electrical energy and stores it in an energy storage device, such as a battery, or uses the electrical energy to power a device. In this way, a device can be remotely charged or powered without having to be tethered to an electrical outlet.
Owner:UBEAM
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products