Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

38 results about "PRAME" patented technology

Melanoma antigen preferentially expressed in tumors is a protein that in humans is encoded by the PRAME gene. Five alternatively spliced transcript variants encoding the same protein have been observed for this gene.

TCR for identifying PRAME antigen

The invention provides a T cell receptor (TCR) capable of specifically binding with a short peptide GLSNLTHVL derived from a PRAME antigen. The short peptide GLSNLTHVL can form a compound with HLA A0201 and is presented on the cell surface together with the HLA A0201. The invention further provides a nucleic acid molecule encoding the TCR and a carrier including the nucleic acid molecule. In addition, the invention further provides a cell transducing the TCR.
Owner:XLIFESC LTD

Prame derived peptides and immunogenic compositions comprising these

The invention relates to a peptide having a length of no more than 100 amino acids and comprising at least 19 contiguous amino acids from the amino acid sequence of the human PRAME protein, wherein the peptide comprises at least one HLA class II epitope and at least one HLA class I epitope from the amino acid sequence of the human PRAME protein and to its use as such or in a composition as a medicament for the treatment and / or prevention of cancer.
Owner:ACADEMISCH ZIEKENHUIS BIJ DE UNIV VAN AMSTERDAM ACADEMISCH MEDISCH CENT

Protein tyrosine phosphatase, non-receptor type 11 (ptpn11) and triple-negative breast cancer

The present invention relates to a method for treating breast cancer in a subject having a breast cancer of the triple-negative type, which method comprises the step of administering to said subject a therapeutically effective amount of a modulator of the protein tyrosine phosphatase, non-receptor type 11 (PTPN11) gene or of its gene product (Shp2). The present invention also relates to a method for treating breast cancer in a subject having a breast cancer over-expressing the “SHP2 signature” genes, as compared to normal breast tissue samples, which method comprises the step of administering to said subject a therapeutically effective amount of a modulator of the protein tyrosine phosphatase, non-receptor type 11 (PTPN11) gene or of its gene product (Shp2), wherein said “SHP2 signature” genes consist of the genes SGCB, ZSCAN12, ID4, ZIC3, CPVL, HLA-A, MCOLN3, SPATA18, TMEM45A, GNAL, CYBRD1, TSPAN7, ZEB1, CNTLN, NEFL, CENPV, ARL6, HPRT1, LRRC34, PDPN, BEND7, SLC16A10, FAM27E1, PLEKHA1, HERC5, CHIC1, PHF6, ELOVL4, ANTXR1, PRAME, SCML1, CLIP4, CECR2, CNOT10, IGF2BP3, NAP1L3, GPC3, KIAA1804, DGKE, FAS, EPHA6, KDELC1, CRISPLD1, DOCK3, ACSL4, CNTNAP3, PLEKHM3, RDX, TBX18, RRAGD, HOXB5, SNCA, FUNDC2, ITGA8, HFM1, IGF2BP2, CCND2, SGTB, MKX, CRYBG3, WBP5, LPHN3, BEX4, CPNE8, GLDC, SLC35F1, HOXA13, SERPINF1, NEFM, SYCP2L, FHL1, APOBEC3C, CALD1, FKBP10, HOXD11, DENND2C, LRRC49, FAM55C, KIAA0408, HOXB9, C160RF62, ACN9, TUSC3, ELOVL2, SPOCK3, HOXB6, WDR35, MPP1, FBX038, PRKAA2, SLAIN1, NPHP3, KIAA1524, PRPS1, GJC1, AMOT, SLC9A6, KCTD12, NUP62CL, DZIP3, JAM3, HOXA9, ANKRD19, CDKN2A, BCAT1, OAT, LPHN2, CCDC82, HSD17B11, SAMHD1, WDR17, STK33, GSTP1, TRPC1, CKB, LIN28B, ALDH1L2, SACS, CLGN, MY03A, EPB41L3, SLC25A27, VCAN, GPX8, GALNT13, PVRL3, MOXD1, HEY1, MAP7D3, ESD, MPP6, EYA4, SPG20, ZDBF2, ZNF204, IFT57, AKR1B1, ADAT2, ZNF717, CCDC88A, ZNF215, MIDI, FBN2, LOC100130876, TCEAL8, IGF2BP1, ANKRD18B, PLAGL1, PM20D2, LDHB, C150RF51, PTPN11, EPB41L2, TLE4, GOLM1, C60RF192, HOXD13, SLIT2, UCHL1, DYNC2H1, CPS1, GPR180, PYGL, NRN1, PRTFDC1, SLC16A1, DSC3, TMC01, LRCH2, SLC6A15, DZIP1, HOXA5, HSPA4L, CDR1, PLS3, ECHDC1, SMARCA1, CXORF57, HOXD10, and IRS4.
Owner:NOVARTIS FORSCHUNGSSTIFTUNG ZWEIGNIEDERLASSUNG FRIEDRICH MIESCHER INSTITTUE FOR BIOMEDICAL RES

Prame derived peptides and immunogenic compositions comprising these

The invention relates to a peptide having a length of no more than 100 amino acids and comprising at least 19 contiguous amino acids from the amino acid sequence of the human PRAME protein, wherein the peptide comprises at least one HLA class II epitope and at least one HLA class I epitope from the amino acid sequence of the human PRAME protein and to its use as such or in a composition as a medicament for the treatment and / or prevention of cancer.
Owner:ACADEMISCH ZIEKENHUIS BIJ DE UNIV VAN AMSTERDAM ACADEMISCH MEDISCH CENT

T cell receptor capable of recognizing short peptide derived from PRAME antigen

The invention provides a T cell receptor (TCR) capable of specifically binding a short peptide LYVDSLFFL derived from a preferentially expressed antigen of melanoma (PRAME) antigen. The antigen shortpeptide LYVDSLFFL and HLA A2402 can form a complex and can be presented to the cell surface together. The invention also provides a nucleic acid molecule for encoding the TCR and a carrier containingthe nucleic acid molecule. In addition, the invention also provides a cell for transducing the TCR provided by the invention.
Owner:XLIFESC LTD

Cancer vaccines targeting prame and uses thereof

Disclosed herein are nucleic acid molecules comprising one or more nucleic acid sequences that encode a mutated consensus PRAME antigen. Vectors, compositions, and vaccines comprising one or more nucleic acid sequences that encode a mutated consensus PRAME antigen are disclosed. Methods of treating a subject with a PRAME-expressing tumor and methods of preventing a PRAME-expressing tumor are disclosed. Mutated consensus PRAME antigen is disclosed.
Owner:INOVIO PHARMA
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products