Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

110 results about "Pericardial space" patented technology

Devices and methods for transluminal or transthoracic interstitial electrode placement

Methods and devices for implanting pacing electrodes or other apparatus, or for delivering substances, to the heart of other tissues within the body. A guided tissue penetrating catheter is inserted into a body lumen (e.g., blood vessel) or into a body cavity or space (e.g., the pericardial space) and a penetrator is advanced from the catheter to a target location. In some embodiments, a substance or an apparatus (such as an electrode) may be delivered through a lumen in the penetrator. In other embodiments, a guidewire may be advanced through the penetrator, the penetrating catheter may then be removed and an apparatus (e.g., electrode) may then be advanced over that guidewire. Also disclosed are various implantable electrodes and electrode anchoring apparatus.
Owner:MEDTRONIC VASCULAR INC

Anatomical space access tools and methods

Medical devices and methods for accessing an anatomical space of the body and particularly for penetrating the epicardium to access pericardial space and the epicardial surface of the heart in a minimally invasive manner employing suction are disclosed. The distal end of a tubular access sleeve having a sleeve wall surrounding a sleeve access lumen and extending between a sleeve proximal end and a sleeve distal end having a plurality of suction ports arrayed around the sleeve access lumen distal end opening is applied against an outer tissue layer. Suction is applied through the plurality of suction ports to a plurality of portions of the outer tissue layer. A perforation instrument is introduced through the sleeve access lumen to perforate the outer tissue layer to form an access perforation into the anatomic space while the applied suction stabilizes the outer tissue layer, whereby further treatment drugs and devices can be introduced into the anatomic space.
Owner:MEDTRONIC INC

Methods and systems for accessing the pericardial space

Methods and systems for transvenously accessing the pericardial space via the vascular system and atrial wall, particularly through the superior vena cava and right atrial wall, to deliver treatment in the pericardial space are disclosed. A steerable instrument is advanced transvenously into the right atrium of the heart, and a distal segment is deflected into the right atrial appendage. A fixation catheter is advanced employing the steerable instrument to affix a distal fixation mechanism to the atrial wall. A distal segment of an elongated medical device, e.g., a therapeutic catheter or an electrical medical lead, is advanced through the fixation catheter lumen, through the atrial wall, and into the pericardial space. The steerable guide catheter is removed, and the elongated medical device is coupled to an implantable medical device subcutaneously implanted in the thoracic region. The fixation catheter may be left in place.
Owner:MEDTRONIC INC

Instruments and methods for accessing an anatomic space

An anatomic space of the body, particularly the pericardial space, is accessed in a minimally invasive manner from a skin incision by an access instrument to facilitate visualization and introduction of devices or drugs or other materials, performance of medical and surgical procedures, and introducing and fixating a cardiac lead electrode to the heart. An elongated access instrument body preferentially bends in one direction and resists bending in a transverse direction, whereby the access instrument body distal end can be directed through a path around body structures to the anatomic site by manipulation of the access instrument body proximal end portion. A distal header formed at the access instrument body distal end extends outward of the access instrument body in the transverse direction and supports an inflatable balloon surrounding a working lumen exit port that is directed toward an anatomic surface when the balloon is inflated by inflation media introduced through an inflation lumen.
Owner:MEDTRONIC INC

Methods and tools for accessing an anatomic space

InactiveUS7063693B2Robust fixationReduce layeringEndoscopesSurgical instrument detailsPericardial spaceAnatomic Surface
A tubular access sleeve and suction tool for accessing an anatomic surface or anatomic space and particularly the pericardium to access pericardial space and the epicardial surface of the heart in a minimally invasive manner are disclosed. A suction tool trunk extending through a suction tool lumen of the sleeve is coupled to suction pads at the ends elongated support arms. The suction pads can be retracted into a sleeve working lumen during advancement of the access sleeve through a passage and deployed from the tubular access sleeve lumen and disposed against the an outer tissue layer. Suction can be applied through suction tool lumens to suction ports of the suction pads that fix to the outer tissue layer so as to tension the outer tissue layer and / or pull the outer tissue layer away from an inner tissue layer so that the anatomic space can be accessed by instruments introduced through the working lumen to penetrate the outer tissue layer.
Owner:MEDTRONIC INC

Methods and apparatus for accessing and stabilizing an area of the heart

A tubular suction tool for accessing an anatomic surface or anatomic space and particularly the pericardium to access pericardial space and the epicardial surface of the heart to implant cardiac leads in a minimally invasive manner are disclosed. The suction tool incorporates a suction pad concave wall defining a suction cavity, a plurality of suction ports arrayed about the concave wall, and a suction lumen, to form a bleb of tissue into the suction cavity when suction is applied. The suction cavity extends along one side of the suction pad, so that the suction pad and suction cavity can be applied tangentially against a tissue site. The suction tool can incorporate light emission and video imaging of tissue adjacent the suction pad. A working lumen terminating in a working lumen port into the suction cavity enables introduction of tools, cardiac leads, and other instruments, cells, drugs or materials into or through the tissue bleb drawn into the suction cavity.
Owner:MEDTRONIC INC

Method and device for accessing a pericardial space

A method for accessing a pericardial space of a heart of a mammalian patient is disclosed comprising: guiding a catheter through a coronary sinus of the heart and to a cardiac vein; advancing said catheter to a distal segment of the cardiac vein; intentionally puncturing the vein with the catheter to access the pericardial space, and performing a therapy or a diagnostic procedure using the catheter an the puncture in the vein and using the pericardial space.
Owner:G&L CONSULTING

Pericardial cardioverter defibrillator

InactiveUS7899537B1Easy to assemblePlacement is undesirableElectrocardiographyHeart defibrillatorsPericardial spaceSubxiphoid approach
An implantable pericardial device provides therapy to a heart of a patient. In one embodiment electronics, electrodes and other components are provided in a unitary assembly. These components may be implemented such that the unitary assembly has a sufficient degree of flexibility. The implantable pericardial device may be implanted into the pericardial space using a relatively low-invasive technique such as a sub-xiphoid approach.
Owner:PACESETTER INC

Devices, systems, and methods for closing the left atrial appendage

Described here are devices, systems and methods for closing the left atrial appendage. Some of the methods described here utilize one or more guide members having alignment members to aid in positioning of a closure device. In general, these methods include advancing a first guide having a first alignment member into the left atrial appendage, advancing a second guide, having a second alignment member, into the pericardial space, aligning the first and second alignment members, advancing a left atrial appendage closure device into the pericardial space and adjacent to the left atrial appendage, and closing the left atrial appendage with the closure device. In these variations, the closure device typically has an elongate body having a proximal end and a distal end, and a closure element at least partially housed within the elongate body. The closure element comprises a loop defining a continuous aperture therethrough.
Owner:SENTREHEART LLC

Direct pericardial access device and method

The invention is directed to a device and method for minimally invasive access to the pericardial space of a human or animal patient. The disclosed pericardial access device includes a penetrating body axially mobile within the lumen of a guide tube. The distal end of the guide tube includes a shoulder to buttress pericardial tissue drawn into the guide tube by a suction force applied to the guide tube lumen. The penetrating body is subsequently distally advanced within the guide tube to access the pericardium.
Owner:SCHMIDT CECIL C

Intrapericardial lead

The intrapericardial lead includes a lead body having a proximal portion and a flexible, pre-curved distal end portion. The distal end portion carries at least one electrode assembly containing an electrode adapted to engage pericardial tissue. The distal end portion further carries a pre-curved flexible wire member having ends attached to spaced apart points along the distal end portion of the lead body, the flexible wire member having a normally expanded state wherein an intermediate portion of the wire member is spaced apart from the distal end portion, and a generally straightened state wherein the wire member and the distal end portion are disposed in a more parallel, adjacent relationship so as to present a small frontal area to facilitate delivery into the pericardial space. The wire member re-expands to its normal state after delivery into the percaridal space to anchor the distal end portion of the lead body relative to the pericardial tissue.
Owner:PACESETTER INC

Methods and apparatus for accessing and stabilizing an area of the heart

A tubular suction tool for accessing an anatomic surface or anatomic space and particularly the pericardium to access pericardial space and the epicardial surface of the heart to implant cardiac leads in a minimally invasive manner are disclosed. The suction tool incorporates a suction pad concave wall defining a suction cavity, a plurality of suction ports arrayed about the concave wall, and a suction lumen, to form a bleb of tissue into the suction cavity when suction is applied. The suction cavity extends along one side of the suction pad, so that the suction pad and suction cavity can be applied tangentially against a tissue site. The suction tool can incorporate light emission and video imaging of tissue adjacent the suction pad. A working lumen terminating in a working lumen port into the suction cavity enables introduction of tools, cardiac leads, and other instruments, cells, drugs or materials into or through the tissue bleb drawn into the suction cavity.
Owner:MEDTRONIC INC

Pacing lead and method for pacing in the pericardial space

A pacing lead for implantation in the pericardial space includes an elongated lead body, a compression fixation element, and at least one electrode on either the lead body or the fixation element. The fixation element defines a resilient structure, and is positioned and dimensioned so that when the lead is disposed in the pericardial space, the resilient fixation element is compressed between the parietal and visceral pericardium, thereby biasing the electrode against the myocardium and providing positional stabilization to the lead. Further positional stability may be provided mechanically with structures enabling the application of adhesive or with fixation screw or tine elements.
Owner:WORLEY SETH

Devices for accessing the pericardial space surrounding the heart

Devices for accessing the pericardial space surrounding the heart. In at least one embodiment of a delivery catheter for use in accessing a pericardial space surrounding the external surface of a heart, the delivery catheter comprises comprising an elongated tube comprising a wall extending from a proximal end of the tube to a distal end of the tube, a first lumen, and a steering channel extending from a proximal end of the tube to a distal end of the tube, the steering channel forming an orifice at the distal end of the tube, and a steering wire system at least partially located in the steering channel, the steering wire system comprising at least two steering wires attached to the wall of the tube within the steering channel and a controller attached to a proximal end of each of the at least two steering wires, wherein the first lumen extends from approximately the proximal end of the tube to or near the distal end of the tube, the first lumen having a bend, relative to the tube, at or near the distal end of the tube and an outlet through the wall of the tube at or near the distal end of the tube.
Owner:CVDEVICES

System and method for lead implantation in a pericardial space

A system for pericardial lead implantation is disclosed herein. The system includes an implantation tool and a stimulation lead. The implantation tool includes a tubular body, a first lumen, a second lumen, a stylet or guidewire, a first port, and a second port. The first and second lumens longitudinally extend through tubular body. The first port is in communication with the first lumen, and the second port is in communication with the second lumen. The stylet or guidewire is longitudinally displaceable in the first lumen and across the first port. A tissue adhesive is selectively administrable through the second port via the second lumen. The stimulation lead includes a distal end and an engagement feature. Placing the engagement feature in the first port and causing the stylet or guidewire to displace in a first direction across the first port causes the lead to attach to the implantation tool. Displacing the stylet or guidewire in a second direction opposite the first direction allows the lead to detach from the implantation tool.
Owner:PACESETTER INC

Methods and devices for accessing and delivering devices to a heart

Described here are devices, methods, and systems for accessing and delivering devices to a heart. The left atrial appendage may be used as an access port to allow pericardial access to internal structures of the heart. Systems that may be used to provide access to the heart via the left atrial appendage may comprise a first access element with a first alignment member, a second access element with a second alignment member, a piercing element, and an exchange element. Some systems may further comprise a left atrial appendage stabilization device. Methods of accessing and delivering devices to the heart via the left atrial appendage may comprise advancing a first access element into the left atrial appendage by an intravascular pathway and advancing a second access element towards the left atrial appendage through the pericardial space. The first and second alignment members may form an attachment through the wall of the left atrial appendage so that the first and second access elements are aligned. A piercing element may be advanced to pierce the wall of the left atrial appendage to form an access site therethrough. Optionally, an exchange element may be advanced to initiate a track between the inside and outside of the left atrial appendage, which may be used for device delivery. Also described here are various methods and devices to create a left atrial appendage access site to help position and operate devices within the heart.
Owner:SENTREHEART LLC

Delivery tool and method for devices in the pericardial space

The present disclosure is a device and method associated with the delivery of medical devices in the pericardial space using a minimally invasive approach with direct visualization. More specifically, the device can be used to deliver permanent pacing, defibrillation and cardiac resynchronization leads, as well as leadless pacemakers for cardiac rhythm management to the epicardial surface of the heart. A subxiphoid procedure is proposed as a minimally invasive alternative to thoracotomy, while the delivery tool incorporates a camera for direct visualization of the procedure. The tool also incorporates a steerable catheter to provide selective control of the placement and orientation of the medical device in the pericardial space.
Owner:CHILDRENS NAT MEDICAL CENT

Apparatus and method for the ligation of tissue

ActiveUS20060253129A1Rapid and reliable accessPrevent implantationWound clampsPericardial spaceOrthodontic ligature
A novel catheter-based system that ligates the left atrial appendage (LAA) on the outside of the heart, preferably using a combination of catheters and / or instruments, e.g., a guide catheter inserted into the interior of the left atrial appendage that may assist in locating the left atrial appendage and / or assist in the optimal placement of a ligature or constricting element on the outside of the appendage, and a ligating catheter and / or instrument outside the heart in the pericardial space to set the ligature or constricting element at the neck of the left atrial appendage.
Owner:SENTREHEART LLC

Methods and devices for accessing and delivering devices to a heart

Described here are devices, methods, and systems for accessing and delivering devices to a heart. The left atrial appendage may be used as an access port to allow pericardial access to internal structures of the heart. Systems that may be used to provide access to the heart via the left atrial appendage may comprise a first access element with a first alignment member, a second access element with a second alignment member, a piercing element, and an exchange element. Some systems may further comprise a left atrial appendage stabilization device. Methods of accessing and delivering devices to the heart via the left atrial appendage may comprise advancing a first access element into the left atrial appendage by an intravascular pathway and advancing a second access element towards the left atrial appendage through the pericardial space. The first and second alignment members may form an attachment through the wall of the left atrial appendage so that the first and second access elements are aligned. A piercing element may be advanced to pierce the wall of the left atrial appendage to form an access site therethrough. Optionally, an exchange element may be advanced to initiate a track between the inside and outside of the left atrial appendage, which may be used for device delivery. Also described here are various methods and devices to create a left atrial appendage access site to help position and operate devices within the heart.
Owner:SENTREHEART LLC

Instruments and methods for accessing an anatomic space

An anatomic space of the body, particularly the pericardial space, is accessed in a minimally invasive manner from a skin incision by an access instrument to facilitate visualization and introduction of devices or drugs or other materials, performance of medical and surgical procedures, and introducing and fixating a cardiac lead electrode to the heart. An elongated access instrument body preferentially bends in one direction and resists bending in a transverse direction, whereby the access instrument body distal end can be directed through a path around body structures to the anatomic site by manipulation of the access instrument body proximal end portion. A distal header formed at the access instrument body distal end extends outward of the access instrument body in the transverse direction and supports an inflatable balloon surrounding a working lumen exit port that is directed toward an anatomic surface when the balloon is inflated by inflation media introduced through an inflation lumen.
Owner:MEDTRONIC INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products