Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Multi-layered osmotic device

a multi-layered, osmotic technology, applied in the direction of drug compositions, extracellular fluid disorders, metabolic disorders, etc., can solve the problems of not revealing or suggesting the use of poly(vinylpyrrolidone)-(vinyl acetate) copolymer as a material suitable for the erodible element, and no single device has been found to be generally applicabl

Inactive Publication Date: 2006-04-18
OSMOTICA KERESKEDELMI & SZOLGALTATO
View PDF14 Cites 28 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0012]It is an object of the present invention to provide an improved multi-layered osmotic device that allows the delivery to an environment of use of an active substance present in an external coating as well as the delayed and controlled delivery of an active substance contained in the core of the osmotic device to either the same or a different environment of use.

Problems solved by technology

'405 Patent discloses the use of an erodible element to form the passageway; however, it does not disclose the use of poly(vinylpyrrolidone)-(vinyl acetate) copolymer as a material suitable for the erodible element.
Although a variety of erodible materials are listed as suitable for use in forming the passageway, the specification does not disclose or suggest poly (vinylpyrrolidone)-(vinyl acetate) copolymer for this use.
While the prior art discloses a wide variety of multi-layered osmotic devices, no single device has been found to be generally applicable and, in fact, most known devices are designed to operate within a relatively narrow range of conditions in an environment of use.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Multi-layered osmotic device
  • Multi-layered osmotic device

Examples

Experimental program
Comparison scheme
Effect test

example 1

[0108]Theophylline monoethanolamine (2.0 kg), mannitol (0.173 kg), Kollidon 90™ (0.075 kg), Povidone (0.150 kg) and colloidal silicon dioxide (0.005 kg) are mixed in a bowl. The mixture is sieved through a 40 mesh U.S.P. screen. Subsequently, a solution containing Kollidon 90 (0.025 kg), polyethylene glycol 1500 (0.1 kg) and deionized water (0.18 L) is added while shaking until the desired consistency is achieved. The resulting wet mixture is sieved through a 10 mesh screen and the resulting granules are placed in trays and dried in a heated oven at 45±2° C. for 12 hours. The dried granulate is then sieved through a 20 mesh screen and placed in a powder mixer or in a double polyethylene bag. A mixture of colloidal silicon dioxide (0.0075 kg) together with magnesium stearate (0.015 kg) is previously sieved through a 50 mesh screen and added to the dried granulate. This mixture is then compressed with a set of 11 mm diameter punches to form partial cores of exemplary osmotic devices.

[...

example 2

[0115]D-pseudoephedrine hydrochloride (2,400 g), grams sodium chloride (810 g), grams microcrystalline cellulose (360.0 g) and poly(vinylpyrrolidone) (500 g) are mixed in a laboratory mixer. The mixture is then sieved through a 40 mesh screen and kneaded while adding of solution containing poly(ethylene glycol) 400 (10.7%) in ethyl alcohol (96% in water). The wet product is sieved through an 8 mesh screen and dried in a heated oven for 12 hours at 45° C. A mixture of colloidal silicon dioxide (25.0 g) and magnesium stearate (75.0 g), previously sieved through a 50 mesh screen, is added to the dry granulate. The resulting granulate mixture is compressed in a compressor with 10 mm diameter punches to form uncoated cores.

[0116]Resulting uncoated cores are then coated with a solution containing cellulose acetate (95%) and polyethylene glycol 400 (5%) in a mixture of methylene chloride (80%) and methanol (20%) to form semipermeable membrane coated cores.

[0117]The semipermeable membrane c...

example 3

[0121]In a laboratory mixer-kneader, ranitidine hydrochloride (2400 g), microcrystalline cellulose (811.0 g), and colloidal silicon dioxide (4.0 g) are mixed. The mixture is sieved through a stainless steel 40 mesh screen and kneaded with a 30% Povidone solution in ethyl alcohol. The wet mixture is then sieved through a 8 mesh screen and dried in heated oven at 40° C. for 12 hours to form a granulate which is sieved through a 20 mesh screen. This granulate is mixed with a mixture of colloidal silicon dioxide (10.0 g) and magnesium stearate (90.0 g) which has been previously sieved through a 50 mesh screen. The final mixture is then compressed in a compressor with 10 mm diameter punches to form uncoated cores.

[0122]The uncoated cores are coated with a 95% cellulose acetate and 5% polyethylene glycol 400 solution in an 80% methylene chloride and 20% methanol mixture. The coated cores are placed in a heater at 45° C. for 12 hours and eventually subjected to laser perforation of their r...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

PropertyMeasurementUnit
Solubility (mass)aaaaaaaaaa
Therapeuticaaaaaaaaaa
Water solubilityaaaaaaaaaa
Login to View More

Abstract

The present invention provides a simple and improved multi-layered osmotic device (1) that is capable of delivering a first active agent in an outer lamina (2) to one environment of use and a second active agent in the core (5) to another environment of use. Particular embodiments of the invention provide osmotic devices in which the first and second active agents are similar or dissimilar. An erodible polymer coat (3) between an internal semipermeable membrane (4) and a second active agent-containing external coat (2) comprises poly(vinylpyrrolidone)-(vinyl acetate) copolymer. This particular erodible polymer results in an improved multi-layered osmotic device possessing advantages over related devices known in the art. The active agent in the core (5) is delivered through a pore (6) containing an erodible plug (7). The osmotic device (1) can be coated by a final finish coat (8).

Description

FIELD OF THE INVENTION[0001]This invention pertains to an osmotic device for the controlled delivery of active agents to an environment of use. More particularly, it pertains to a multi-layered osmotic device that allows the immediate delivery of a first active agent followed by a monitored, continuous, controlled and / or retarded delivery of a second active agent which is the same or different as the first active agent.BACKGROUND OF THE INVENTION[0002]Osmotic devices have demonstrated utility in delivering useful active agents such as medicines, nutrients, food products, pesticides, herbicides, germicides, algaecides, chemical reagents, and the like to an environment of use in a controlled manner over prolonged periods of time. Known devices include tablets, pastilles, pills or capsules and others and generally include layers comprising one or more materials that are subject to erosion or that slowly dissolve in the environment of use thereby gradually dispensing the active agent.[0...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
IPC IPC(8): A61K9/22A61KA61K9/24A61K9/00A61K31/137A61K31/341A61K31/40A61K31/4468A61K31/4545A61K31/522A61K31/554A61K47/32
CPCA61K9/0004A61P1/00A61P1/04A61P11/00A61P11/08A61P13/00A61P17/00A61P3/00A61P43/00A61P5/00A61P7/00A61P9/00
Inventor FAOUR, JOAQUINAMAYORGA, JORGE E.
Owner OSMOTICA KERESKEDELMI & SZOLGALTATO
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products