Semiconductor device and fabrication method of the same
a technology of semiconductors and semiconductors, applied in the direction of semiconductor devices, electrical equipment, transistors, etc., can solve the problems of difficult enlarging size, high breakdown voltage cannot be achieved, and high cost of gan substrates, and achieve low on-state resistance and high breakdown capability.
- Summary
- Abstract
- Description
- Claims
- Application Information
AI Technical Summary
Benefits of technology
Problems solved by technology
Method used
Image
Examples
first embodiment
[0036]FIG. 2 is a cross-sectional view of a transistor in accordance with a first embodiment of the present invention. This transistor is a vertical type FET (HEMT: High Electron Mobility Transistor). The aforementioned n-type SiC buffer layer 12 and the n-type SiC drift layer 14 are formed on a (0001) plane of the n-type SiC substrate 10 in this order. Further, an n-type AlGaN layer 20, a GaN channel layer 22 and an AlGaN cap layer 24 are grown as a GaN-based semiconductor layer 28. The source electrodes 60 are formed on the cap layer 24, and gate electrodes 62 are partially buried in the cap layer 24. P-type SiC regions 16 are provided in the drift layer 14 below the gate electrodes 62, and highly doped p-type SiC regions 18 are provided in the drift layer 14. A drain electrode 64 is provided on the backside of the SiC substrate 10. That is, the drain electrode 64 is formed on a surface that opposes the GaN-based semiconductor layer across the SiC layer. The transistor of the firs...
second embodiment
[0048]FIG. 8 is a cross-sectional view of a transistor in accordance with a second embodiment of the present invention. This transistor is a vertical type FET (HEMT). The n-type SiC buffer layer 12 and then-type SiC drift layer 14 are formed on the (0001) plane of the n-type SiC substrate 10 in this order. As the GaN-based semiconductor layer 38, an n-type AlGaN drain layer 30, a p-type GaN channel layer (p-type GaN-based semiconductor layer) 32, and an AlGaN source layer 34. An opening region 37 is formed so as to reach the AlGaN drain layer 30 from the device surface. The opening region 37 is essentially deeper than the p-type channel layer 32.
[0049]An AlN cap layer 36 is formed so as to cover the opening region 37. Gate electrodes 60 are formed on the cap layer 36, and the source electrodes 60 are on the cap layer 36, namely, the GaN-based semiconductor layer 38. The cap layer 36 having a wider band gap than that of the channel layer 32 is arranged on the side surface of the chan...
third embodiment
[0056]FIG. 13 is a cross-sectional view of a transistor in accordance with a third embodiment of the present invention. This transistor is a vertical FET (HEMT). The n-type SiC buffer layer 12, the n-type SiC drift layer 14 and the p-type SiC layer 15 are formed on the (0001) plane of the n-type SiC substrate 10 in this order. An opening region 47 is formed so as to be at least deeper than the p-type SiC layer 15. As a GaN-based semiconductor layer 48, an n-type AlGaN drain layer 40, a non-doped GaN channel layer 42 and an AlGaN source layer 44 are formed in this order. The GaN-based semiconductor layer 48 has a resultant opening region.
[0057]The source electrodes 60 are formed on the source layer 44, and the gate electrodes 62 are partially buried in the source layer 44. The drain electrode 64 is formed on the backside of the SiC substrate 10. That is, the drain electrode 64 is connected to the surface of the drift layer 14 that opposes the GaN-based semiconductor layer 48 across t...
PUM
Abstract
Description
Claims
Application Information
- R&D Engineer
- R&D Manager
- IP Professional
- Industry Leading Data Capabilities
- Powerful AI technology
- Patent DNA Extraction
Browse by: Latest US Patents, China's latest patents, Technical Efficacy Thesaurus, Application Domain, Technology Topic, Popular Technical Reports.
© 2024 PatSnap. All rights reserved.Legal|Privacy policy|Modern Slavery Act Transparency Statement|Sitemap|About US| Contact US: help@patsnap.com