Semiconductor device formed over a surface with a depression portion and a projection portion
- Summary
- Abstract
- Description
- Claims
- Application Information
AI Technical Summary
Benefits of technology
Problems solved by technology
Method used
Image
Examples
embodiment 1
This embodiment explains how to form an insulating film having depression / projection.
At first, a first insulating film 251 is formed on a substrate 250, as shown in FIG. 8A. Although the first insulating film 251 uses silicon oxide nitride in this embodiment, this is not limited to, i.e. an insulating film having a great etching selective ratio to a second insulating film is satisfactory. In this embodiment, the first insulating film 251 was formed to a thickness of 50-200 nm using SiH4 and N2O by a CVD apparatus. Note that the first insulating film may be of a single layer or a layered structure having a plurality of insulating films.
Then, a second insulating film 252 is formed in contact with the first insulating film 251, as shown in FIG. 8B. The second insulating film 252 requires a film thickness to a degree that, when a depression-projection is formed thereon by patterning in a subsequent process, the depression-projection appears on a surface of a semiconductor film to be sub...
embodiment 2
This embodiment explains an example that a semiconductor film formed on an insulating film in a stripe form is crystallized by laser light irradiation and thereafter mutually isolated islands are formed on a surface parallel with an projection-formed substrate to fabricate TFT using the islands.
FIG. 10A shows a TFT structure of this embodiment. In FIG. 10A, an insulating film 152 having striped projection parts 151 is formed on a substrate 150. A plurality of islands 153 are formed, isolated from one another, on the top surfaces of the projection parts 151. An gate insulating film 154 is formed in a manner contacting with the islands 153. Incidentally, although the gate insulating film 154 in FIG. 10A is formed exposing the regions, to be made into impurity regions, of the island, it may be formed covering the entire island 154.
A plurality of gate electrodes 155 is formed on the gate insulating film 154 in a manner superposed over a plurality of islands 153. The plurality of gate el...
embodiment 3
This embodiment explains variations of insulating film forms.
FIG. 11A shows an embodiment on an insulating film form of the invention. In FIG. 11A, an insulating film 171 is formed on a substrate 170 wherein the insulating film 171 has a plurality of projection parts 172. The projection part 172 is rectangular in form as viewed from the above. All the projection parts have respective rectangular longer or shorter sides in a direction parallel with a scanning direction of laser light shown by the arrow.
The projection parts 172 are not necessarily identical to one another in the width in laser-light scanning direction and the width perpendicular to the scanning direction. A form of an insulating film is desirably designed to meet a desired island form.
It is not necessary that projection parts of the insulating film using the present invention being completely striped. It is need only a portion of the insulating film is striped or rectangular. FIG. 11B shows an embodiment on an insulat...
PUM
Property | Measurement | Unit |
---|---|---|
Concentration | aaaaa | aaaaa |
Abstract
Description
Claims
Application Information
- R&D Engineer
- R&D Manager
- IP Professional
- Industry Leading Data Capabilities
- Powerful AI technology
- Patent DNA Extraction
Browse by: Latest US Patents, China's latest patents, Technical Efficacy Thesaurus, Application Domain, Technology Topic, Popular Technical Reports.
© 2024 PatSnap. All rights reserved.Legal|Privacy policy|Modern Slavery Act Transparency Statement|Sitemap|About US| Contact US: help@patsnap.com