N4-Acylcytosine Nucleosides for Treatment of Viral Infections
a technology of acylcytosine and nucleosides, which is applied in the field of n4acylcytosine nucleosides for treatment of viral infections, can solve the problems of fulminant hepatitis, jaundice and elevated blood levels of certain enzymes, and inability to fully recover, so as to improve the inhibitory activity, the effect of treating or preventing hiv and/or hbv infection
- Summary
- Abstract
- Description
- Claims
- Application Information
AI Technical Summary
Benefits of technology
Problems solved by technology
Method used
Image
Examples
example 1
(S)-(+)-5-Oxo-2-tetrahydrofurancarboxylic acid (2)
[1752] To a mixture of L-glutamic acid (1, 25 g, 170 mmol) in water (67 mL) and conc. HCl (35 mL) at 0° C. with stirring was added a solution of NaNO2 (17.5 g, 253.6 mmol) in water (37.5 mL) over a period of 4 h, and then the resulting clear solution was stirred at room temperature overnight. After removal of the solvent by evaporation in vacuo, the residue was treated with EtOAC (80 mL) and filtered. The filtrate was dried over Na2SO4, and concentrated. The residue, after crystallization from EtOAc / benzene / hexane, afforded the title compound 2 as a white crystalline solid (13.12 g, 59%). M.P. 71-73° C.; 1H NMR (400 MHz, CD3OD) δ 4.20 (m, 1H, CHO), 1.8-2.3 (m, 4H, CH2CH2).
example 2
(S)-(+)-Dihydro-5-(hydroxymethyl)-2(3H)-furanone (3)
[1753] To a solution of 2 (10 g, 76.85 mmol) in anhydrous THF (200 mL) at 0° C. was slowly added BH3-SMe2 (2 M solution in THF, 46.1 mL, 92.2 mmol) over a period of 10 min. The reaction solution was stirred at 0° C. for 3 h under nitrogen, followed by the slow addition of anhydrous MeOH (20 mL). After removal of the solvent, the residue was purified by flash chromatography on silica gel eluting with CH2Cl2 / MeOH (95:5) to give the title compound 3 as a colorless oil (8.41 g, 94%). 1H NMR (CDCl3) δ 4.66-4.65 (m, 1H, H-5), 3.95-3.91 (m, 1H, CH2OH), 3.72-3.65 (m, 1H, CH2OH), 2.65-2.57 (m, 2H, H-3), 2.30-2.17 (m, 3H, H-4, OH).
example 3
(S)-5-[(tert-Butyldiphenylsilyl)hydroxymethyl]-dihydro-2(3H)-furanone (4)
[1754] To a solution of 3 (7.0 g, 60 mmol) and imidazole (9.19 g, 135 mmol) in anhydrous DMF (70 mL) was added tert-butyldiphenylsilyl chloride (18.14 g, 66 mmol, 17.2 mL), and the solution was stirred at room temperature under a nitrogen atmosphere for 1 h. After removal of the solvent by evaporation, the residue was dissolved in CHCl3, washed with water and brine, dried (Na2SO4), filtered, and concentrated. After crystallization from hexane, the oily residue gave the title compound 4 as a white crystalline solid (20.6 g, 97%). M.P. 76° C.; 1H NMR (CDCl3) δ 7.68-7.65 (m, 4H, arom.), 7.47-7.39 (m, 6H, arom.), 4.63-4.61 (m, 1H, H-5), 3.90-3.87 (dd, J=3 & 11 Hz, 1H, CH2OH), 3.70-3.67 (dd, J=3 & 11 Hz, 1H, CH2OH), 2.69-2.65 (m, 1H, H-3), 2.56-2.52 (m, 1H, H-3), 2.32-2.23 (m, 2H, H-4), 1.06 (s, 9H, t-Bu).
PUM
Abstract
Description
Claims
Application Information
- R&D Engineer
- R&D Manager
- IP Professional
- Industry Leading Data Capabilities
- Powerful AI technology
- Patent DNA Extraction
Browse by: Latest US Patents, China's latest patents, Technical Efficacy Thesaurus, Application Domain, Technology Topic, Popular Technical Reports.
© 2024 PatSnap. All rights reserved.Legal|Privacy policy|Modern Slavery Act Transparency Statement|Sitemap|About US| Contact US: help@patsnap.com