Low-energy consumption chemical field-driven organic pollutant degradation catalyst and application thereof
A technology with organic pollutants and low energy consumption, applied in physical/chemical process catalysts, organic compound/hydride/coordination complex catalysts, metal/metal oxide/metal hydroxide catalysts, etc. Low efficiency, single selectivity of target treatment pollutants, etc.
- Summary
- Abstract
- Description
- Claims
- Application Information
AI Technical Summary
Problems solved by technology
Method used
Image
Examples
preparation example Construction
[0088] The preparation method of A component comprises the steps:
[0089] 1) Preparation of transition noble metal-based nanoparticles by deposition-precipitation, photoreduction or chemical synthesis;
[0090] 2) Preparation of carrier oxides;
[0091] 3) The transition noble metal-based nanoparticles and the carrier oxide were prepared as a solution, and ultrasonically dispersed; the solution of the transition noble metal-based nanoparticles was added to the solution of the carrier oxide under stirring conditions, centrifuged and vacuum-dried, and the resulting solid powder In oxygen, air, nitrogen or H at a volume ratio of 5:95 2 / Ar atmosphere calcined (100-600 ℃), that is A component.
[0092] The application of the above catalysts in the degradation of organic pollutants: the organic pollutants and B component are prepared as a mixed solution; the concentration of organic pollutants is 1*10-5-0.1 mol / L; the concentration of B component is 0.1-1mol / L; then add compon...
Embodiment 1
[0095] In this example, the chemical reduction method is used as an example to prepare Pd with a particle size of 5 nm. Weigh 150 mg of palladium diacetylacetonate into a 100 mL round-bottomed flask, measure 30 mL of oleylamine with a graduated cylinder, and stir in an oil bath at 60°C until the solution is clear; add 260 mg of borane-tert-butylamine complex ( BTBC) was dissolved in 2 mL of oleylamine, then added dropwise to the flask, and the temperature was raised to 90°C for 1 h; after the solution was cooled to room temperature, 50 mL of absolute ethanol was added, centrifuged and washed with absolute ethanol for 2-3 Dry it for later use.
[0096] TiO 2 Preparation of nanotubes: 0.6 g TiO 2 The powder and 60 mL NaOH (10 mol / L) solution were dispersed by ultrasonic wave for 30 min, and stirred in the dark for 1 h to mix well, then transferred to a stainless steel hydrothermal reaction kettle with a polytetrafluoroethylene liner (100 mL), sealed, Place in a blast drying o...
Embodiment 2
[0101] In this embodiment, the preparation of Pd nanoparticles by the photoreduction method is taken as an example. Prepare PdCl 2 aqueous solution, weigh 1 g of TiO 2 Nanoparticles (25 nm) were added to 10 mL of deionized aqueous solution, ultrasonically dispersed for 10 min, and PdCl was added dropwise during stirring 2 After the solution was added dropwise, stir for 30 min, irradiate the solution under a 300 W mercury lamp for 1 h, take out the centrifuged water, wash 2-3 times, and dry. By changing the precursor PdCl 2 The amount of Pd to adjust the TiO 2 The amount of loading on it ranges from 0.1wt% to 5wt%.
[0102] Other parts of this embodiment can refer to Embodiment 1.
PUM
Abstract
Description
Claims
Application Information
- R&D Engineer
- R&D Manager
- IP Professional
- Industry Leading Data Capabilities
- Powerful AI technology
- Patent DNA Extraction
Browse by: Latest US Patents, China's latest patents, Technical Efficacy Thesaurus, Application Domain, Technology Topic, Popular Technical Reports.
© 2024 PatSnap. All rights reserved.Legal|Privacy policy|Modern Slavery Act Transparency Statement|Sitemap|About US| Contact US: help@patsnap.com