A catalyst-enhanced mgal-based hydrogen storage material
A hydrogen storage material and catalyst technology, applied in the field of MgAl-based hydrogen storage materials, can solve the problems of alloy hydride thermodynamic or kinetic obstacles, slow hydrogen desorption rate, high activation energy of dehydrogenation, etc.
- Summary
- Abstract
- Description
- Claims
- Application Information
AI Technical Summary
Problems solved by technology
Method used
Examples
Embodiment 1
[0015] The catalyst-enhanced MgAl-based hydrogen storage material is prepared by the following method: provide Mg and Al metal raw materials; weigh Mg and Al metal raw materials according to the molar ratio Mg:Al=16:11; weigh the Mg and Al metal raw materials Carry out the first vacuum smelting to obtain the primary Mg alloy ingot; crush the primary Mg alloy ingot to obtain the primary magnesium alloy block; provide Ti, Zr and V metal raw materials; prepare the primary magnesium alloy block and Ti, Zr and Weigh the V metal raw material; ball mill the weighed primary magnesium alloy block and Ti, Zr and V metal raw materials to obtain composite metal powder; use the cold isostatic pressing method to press the composite metal powder into a loose alloy ingot; loose alloy performing hot pressing on the ingot to obtain a dense alloy ingot; performing heat treatment on the dense alloy ingot; performing wire cutting on the dense alloy ingot after the heat treatment. The first vacuum ...
Embodiment 2
[0017] The catalyst-enhanced MgAl-based hydrogen storage material is prepared by the following method: provide Mg and Al metal raw materials; weigh Mg and Al metal raw materials according to the molar ratio Mg:Al=18:13; weigh the Mg and Al metal raw materials Carry out the first vacuum smelting to obtain the primary Mg alloy ingot; crush the primary Mg alloy ingot to obtain the primary magnesium alloy block; provide Ti, Zr and V metal raw materials; prepare the primary magnesium alloy block and Ti, Zr and Weigh the V metal raw material; ball mill the weighed primary magnesium alloy block and Ti, Zr and V metal raw materials to obtain composite metal powder; use the cold isostatic pressing method to press the composite metal powder into a loose alloy ingot; loose alloy performing hot pressing on the ingot to obtain a dense alloy ingot; performing heat treatment on the dense alloy ingot; performing wire cutting on the dense alloy ingot after the heat treatment. The first vacuum ...
Embodiment 3
[0019]The catalyst-enhanced MgAl-based hydrogen storage material is prepared by the following method: provide Mg and Al metal raw materials; weigh Mg and Al metal raw materials according to the molar ratio Mg:Al=17:12; weigh the Mg and Al metal raw materials Carry out the first vacuum smelting to obtain the primary Mg alloy ingot; crush the primary Mg alloy ingot to obtain the primary magnesium alloy block; provide Ti, Zr and V metal raw materials; prepare the primary magnesium alloy block and Ti, Zr and Weigh the V metal raw material; ball mill the weighed primary magnesium alloy block and Ti, Zr and V metal raw materials to obtain composite metal powder; use the cold isostatic pressing method to press the composite metal powder into a loose alloy ingot; loose alloy performing hot pressing on the ingot to obtain a dense alloy ingot; performing heat treatment on the dense alloy ingot; performing wire cutting on the dense alloy ingot after the heat treatment. The first vacuum s...
PUM
Abstract
Description
Claims
Application Information
- R&D Engineer
- R&D Manager
- IP Professional
- Industry Leading Data Capabilities
- Powerful AI technology
- Patent DNA Extraction
Browse by: Latest US Patents, China's latest patents, Technical Efficacy Thesaurus, Application Domain, Technology Topic, Popular Technical Reports.
© 2024 PatSnap. All rights reserved.Legal|Privacy policy|Modern Slavery Act Transparency Statement|Sitemap|About US| Contact US: help@patsnap.com