Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

113 results about "PROSTHETIC MITRAL VALVE" patented technology

Transcatheter Mitral Valve In Prosthetic Valve procedures are where a transcatheter valve is placed inside an existing surgically implanted mitral tissue valve. Prosthetic heart valves can either fail by becoming too tight (prosthetic mitral stenosis) or too leaky (prosthetic mitral regurgitation).

Device and method for replacing mitral valve

A prosthetic mitral valve assembly and method of inserting the same is disclosed. In certain disclosed embodiments, the prosthetic mitral valve assembly has a flared upper end and a tapered portion to fit the contours of the native mitral valve. The prosthetic mitral valve assembly can include a stent or outer support frame with a valve mounted therein, The assembly can be adapted to expand radially outwardly and into contact with the native tissue to create a pressure fit. One embodiment of a method includes positioning the mitral valve assembly below the annulus such that the annulus itself can restrict the assembly from moving in an upward direction towards the left atrium. The mitral valve assembly is also positioned so that the leaflets of the mitral valve hold the assembly to prevent downward movement of the assembly towards the left ventricle.
Owner:EDWARDS LIFESCIENCES CORP

Prosthetic mitral valve with tissue anchors

Apparatus and methods are described including a prosthetic atrioventricular valve (10) for coupling to a native atrioventricular valve (12). The prosthetic valve includes a support frame (20) and a covering (22), which at least partially covers the support frame. The support frame and the covering are shaped so as to define a downstream skirt (24). A plurality of prosthetic leaflets (40) are coupled to at least one element selected from the group consisting of the support frame and the covering. An elongated anchoring member (152) is positioned around the downstream skirt in a subvalvular space (150), such that the anchoring member presses native leaflets (30) of the native valve against the downstream skirt, thereby anchoring the prosthetic valve to the native valve. Other applications are also described.
Owner:CARDIOVALVE LTD

Prosthetic mitral valve

A prosthetic mitral valve with a frame comprises at least one arm shaped to deploy among a region of chordae tendineae of the native mitral valve to deflect these chords in order to pull the native valve leaflets around the frame to avoid paravalvular leaks. The frame may be made from two parts that are connected by sutures. The prosthetic valve may be deployed by a catherer comprising a deployment clamp attached to the valve frame where the deployment clamp is actuable to induce rotation of the frame.
Owner:TEL HASHOMER MEDICAL RES INFRASTRUCTURE & SERVICES

System and method for cardiac valve repair and replacement

A prosthetic mitral valve includes a proximal anchor, a distal anchor, and a central portion therebetween. The proximal and distal anchors each include a first outer frame and a second outer frame. The first outer frame includes a plurality of first arcs joined together, and the second outer frame includes a plurality of second arcs joined together. The plurality of first arcs are out of phase relative to the plurality of second arcs.
Owner:CEPHEA VALVE TECH

Tethers for Prosthetic Mitral Valve

This invention relates to the design and function of a single-tether compressible valve replacement prosthesis which can be deployed into a beating heart without extracorporeal circulation using a transcatheter delivery system. The design as discussed combats the process of wear on anchoring tethers over time by using a plurality of stent-attached, centering tethers, which are themselves attached to a single anchoring tether, which extends through the ventricle and is anchored to a securing device located on the epicardium.
Owner:TENDYNE HLDG

Halo Wire Fluid Seal Device for Prosthetic Mitral Valves

InactiveUS20140379076A1Heart valvesWire rodProsthesis
This invention relates to a self-expanding pre-configured compressible transcatheter prosthetic cardiovascular valve that comprises an atrial halo fluid sealing device mounted on a self-expanding inner wire frame having a leaflet structure comprised of articulating leaflets that define a valve function, said inner wire frame is disposed within a self-expanding annular tissue-covered outer wire frame, said outer wire frame having an articulating collar, forming a multi-component prosthetic valve assembly for anchoring within the mitral valve or triscuspid valve of the heart, and methods for deploying such a valve for treatment of a patient in need thereof
Owner:TENDYNE HLDG

Six cell inner stent device for prosthetic mitral valves

InactiveUS20140358224A1Prevent perivalvular leakHeart valvesSurgeryProsthesisPROSTHETIC MITRAL VALVE
This invention relates to a self-expanding wire frame for a pre-configured compressible transcatheter prosthetic cardiovascular valve, a combined inner valve-outer collar component system, and methods for deploying such a valve for treatment of a patient in need thereof.
Owner:TENDYNE HLDG

Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods

Devices and methods for implantation at a native mitral valve. One embodiment of the device includes a valve support having a first region and a second region, and anchoring member having a longitudinal dimension with a first portion configured to contact tissue at the non-circular annulus, a second portion configured to be attached to the valve support, and a lateral portion transverse to the longitudinal dimension between the first portion and the second portion. The anchoring member and the valve support are configured to move from a low-profile configuration to an expanded configuration in which the first portion of the anchoring member at least partially adapts to the non-circular annulus of the native mitral valve and a shape of the first region of the valve support is at least partially independent of a shape of the first portion of the anchoring member.
Owner:TWELVE

Devices, systems and methods for delivering a prosthetic mitral valve and anchoring device

Prosthetic mitral heart valves and anchors for use with such valves are provided that allow for an improved implantation procedure. In various embodiments, a helical anchoring device is formed as a coiled or twisted anchor that includes one or more turns that twist or curve around a central axis. Curved arms attached to the frame of the valve guide the helical anchoring device into position beneath the valve leaflets and around the mitral valve annulus as it exits the delivery catheter, and the expandable prosthetic mitral valve is held within the coil of the anchoring device. The anchoring device and the valve can be delivered together, simplifying the valve replacement procedure.
Owner:MITRAL VALVE TECHNOLOGIES SARL

System for mitral valve repair and replacement

Systems for mitral valve repair are disclosed where one or more mitral valve interventional devices may be advanced intravascularly into the heart of a patient and deployed upon or along the mitral valve to stabilize the valve leaflets. The interventional device may also facilitate the placement or anchoring of a prosthetic mitral valve implant. The interventional device may generally comprise a distal set of arms pivotably and / or rotating coupled to a proximal set of arms which are also pivotably and / or rotating coupled. The distal set of arms may be advanced past the catheter opening to a subannular position (e.g., below the mitral valve) and reconfigured from a low-profile delivery configuration to a deployed securement configuration. The proximal arm members may then be deployed such that the distal and proximal arm members may grip the leaflets between the two sets of arms to stabilize the leaflets.
Owner:TWELVE

Prosthetic mitral valve

An improved prosthetic mitral valve is provided having advantageous hemodynamic performance, nonthrombogenicity, and durability. The valve includes a valve body having an inflow annulus and an outflow annulus. Commissural attachment locations are disposed adjacent the outflow annulus. An anterior leaflet and a posterior leaflet of the valve are shaped differently from one another. The inflow annulus preferably is scalloped so as to have a saddle-shaped periphery having a pair of relatively high portions separated by a pair of relatively low portions. The anterior high portion preferably is vertically higher than the posterior high portion.
Owner:MEDTRONIC 3F THERAPEUTICS

Prosthetic mitral valve with ventricular tethers and methods for implanting same

A prosthetic valve assembly and method of implanting same is disclosed. The prosthetic valve assembly includes a prosthetic valve formed by support frame and valve leaflets, with one or more tethers each having a first end secured to the support frame and the second end attached to, or configured for attachment to, to papillary muscles or other ventricular tissue. The tether is configured and positioned so as to avoid contact or other interference with movement of the valve leaflets, while at the same time providing a tethering action between the support frame and the ventricular tissue. The valve leaflets may be flexible (e.g., so-called tissue or synthetic leaflets) or mechanical.
Owner:EDWARDS LIFESCIENCES CORP

Atrial Thrombogenic Sealing Pockets for Prosthetic Mitral Valves

InactiveUS20150005874A1Heart valvesThrombusProsthesis
This invention relates to a self-expanding pre-configured compressible transcatheter prosthetic cardiovascular valve that comprises atrial thrombogenic sealing pocket cover mounted on a self-expanding inner wire frame having a leaflet structure comprised of articulating leaflets that define a valve function, said inner wire frame is disposed within a self-expanding annular tissue-covered outer wire frame, said outer wire frame having an articulating collar, forming a multi-component prosthetic valve assembly for anchoring within the mitral valve or triscuspid valve of the heart, and methods for deploying such a valve for treatment of a patient in need thereof.
Owner:TENDYNE HLDG

Anatomically Approximate Prosthetic Mitral Valve

An anatomically approximate prosthetic heart valve includes dissimilar flexible leaflets, dissimilar commissures and / or a non-circular flow orifice. The heart valve may be implanted in the mitral position and have one larger leaflet oriented along the anterior aspect so as to mimic the natural anterior leaflet. Two other smaller leaflets extend around the posterior aspect of the valve. A basic structure providing peripheral support for the leaflets includes two taller commissures on both sides of the larger leaflet, with a third, smaller commissure between the other two leaflets. The larger leaflet may be thicker and / or stronger than the other two leaflets. The base structure defines a flow orifice intended to simulate the shape of the mitral annulus during the systolic phase. For example, the flow orifice may be elliptical. A relatively wide sewing ring has a contoured inflow end and is attached to the base structure in such a way that the valve can be implanted in an intra-atrial position and the taller commissures do not extend too far into the left ventricle, therefore avoiding injury to the ventricle.
Owner:EDWARDS LIFESCIENCES CORP

Artificial mitral valve

An artificial mitral valve is made of a short piece of elastomeric tubing having a one round end and one flattened end. The tubing can be rolled up to a small diameter and fits snuggly into the mitral valve opening when expanded. The tubing attaches to a few rings made of thin flexible wire. When the rings are expanded inside the left atrium, they form a support structure holding the artificial valve in the correct position. The rings can be flattened and delivered via a catheter together with the valve. The artificial valve contains no rigid component, therefore it does not deform or damage the area around the defective mitral valve and can be installed even in highly calcified or deteriorated valves.
Owner:GELBART DANIEL +1

System and method for cardiac valve repair and replacement

A method of delivering a prosthetic mitral valve includes delivering a distal anchor from a delivery sheath such that the distal anchor self-expands inside a first heart chamber on a first side of the mitral valve annulus, pulling proximally on the distal anchor such that the distal anchor self-aligns within the mitral valve annulus and the distal anchor rests against tissue of the ventricular heart chamber, and delivering a proximal anchor from the delivery sheath to a second heart chamber on a second side of the mitral valve annulus such that the proximal anchor self-expands and moves towards the distal anchor to rest against tissue of the second heart chamber. The self-expansion of the proximal anchor captures tissue of the mitral valve annulus therebetween.
Owner:CEPHEA VALVE TECH

Replacement mitral valves

ActiveUS20170325948A1Spring constantIncrease the spring constantStentsHeart valvesEngineeringMitral valve leaflet
A prosthetic mitral valve includes an anchor assembly, an annular strut frame, and a plurality of replacement leaflets secured to the annular strut frame. The anchor assembly includes a ventricular anchor, an atrial anchor, and a central portion therebetween. The annular strut frame is disposed radially within the anchor assembly. An atrial end of the annular strut frame is attached to the anchor assembly such that a ventricular end of the annular strut frame is spaced away from the anchor assembly.
Owner:CEPHEA VALVE TECH

Tethers for prosthetic mitral valve

This invention relates to the design and function of a single-tether compressible valve replacement prosthesis which can be deployed into a beating heart without extracorporeal circulation using a transcatheter delivery system. The design as discussed combats the process of wear on anchoring tethers over time by using a plurality of stent-attached, centering tethers, which are themselves attached to a single anchoring tether, which extends through the ventricle and is anchored to a securing device located on the epicardium.
Owner:TENDYNE HLDG

System for mitral valve repair and replacement

Systems for mitral valve repair are disclosed where one or more mitral valve interventional devices may be advanced intravascularly into the heart of a patient and deployed upon or along the mitral valve to stabilize the valve leaflets. The interventional device may also facilitate the placement or anchoring of a prosthetic mitral valve implant. The interventional device may generally comprise a distal set of arms pivotably and / or rotating coupled to a proximal set of arms which are also pivotably and / or rotating coupled. The distal set of arms may be advanced past the catheter opening to a subannular position (e.g., below the mitral valve) and reconfigured from a low-profile delivery configuration to a deployed securement configuration. The proximal arm members may then be deployed such that the distal and proximal arm members may grip the leaflets between the two sets of arms to stabilize the leaflets.
Owner:TWELVE

Replacement mitral valves

A prosthetic mitral valve includes an anchor assembly, a strut frame, and a plurality of replacement leaflets secured to the annular strut frame. The anchor assembly includes a ventricular anchor, an atrial anchor, and a central portion therebetween. The ventricular anchor and the atrial anchor are configured to flare radially outwards relative to the central portion. The annular strut frame is disposed radially within the anchor assembly and is attached to the anchor assembly. The central portion is configured to align with a native valve orifice and the ventricular anchor and the atrial anchor are configured to compress native cardiac tissue therebetween.
Owner:CEPHEA VALVE TECH

Prosthetic mitral valve with adjustable support

ActiveUS20160015514A1Mitral regurgitation has been reduced and eliminatedStentsGuide needlesProsthesisMitral valve leaflet
Disclosed is an implantable mitral valve having an adjustable support. The support comprises a plurality of pairs of adjacent struts joined at apexes and a plurality of anchors for tissue engagement. The implant is adjustable to a first, reduced diameter for transluminal navigation and delivery to the left atrium of a heart. The implant may then expand to a second, enlarged diameter for the step of embedding the anchors into tissue surrounding and / or including the mitral valve. The implant may then be adjusted to a third, intermediate diameter, pulling the tissue radially inwardly, thereby reducing the native mitral valve annulus and supporting the prosthetic mitral valve.
Owner:BOSTON SCI SCIMED INC

Replacement mitral valves

A prosthetic mitral valve includes an anchor assembly, a strut frame, and a plurality of replacement leaflets secured to the annular strut frame. The anchor assembly includes a ventricular anchor, an atrial anchor, and a central portion therebetween. The ventricular anchor and the atrial anchor are configured to flare radially outwards relative to the central portion. The annular strut frame is disposed radially within the anchor assembly and is attached to the anchor assembly. The central portion is configured to align with a native valve orifice and the ventricular anchor and the atrial anchor are configured to compress native cardiac tissue therebetween.
Owner:CEPHEA VALVE TECH

Multi-component designs for heart valve retrieval device, sealing structures and stent assembly

This invention relates to the design and function of a device which allows for retrieval of a previously implanted valve prosthesis from a beating heart without extracorporeal circulation using a transcatheter retrieval system, including a guide component to facilitate the compression of the valve and retraction into a retrieval catheter, as well as an improved prosthetic transcatheter heart valve having one or more of: a series of radially extending tines having a loop terminus to improve sealing a deployed prosthetic mitral valve against hemodynamic leaking, a pre-compressible stent-in-stent design, or an articulating cuff attached to a covered stent-valve and a commissural sealing skirt structure attached to the underside of the articulating cuff.
Owner:TENDYNE HLDG
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products