Method used for synthesizing 2, 4-oxazolidinedione compound through organic amine catalyzing CO2
A technology of oxazolidinediones and organic catalysts, applied in the direction of organic chemistry, etc., to achieve the effects of simple post-treatment process, wide range of reaction substrate types, safe and simple reaction operation
- Summary
- Abstract
- Description
- Claims
- Application Information
AI Technical Summary
Problems solved by technology
Method used
Image
Examples
Embodiment 1
[0020] Under a carbon dioxide atmosphere, add a stirring bar, 0.5 mmol of N-benzyl-3-phenylpropynamide, 0.025 mmol of TBD, and 0.2 ml of tetrahydrofuran into a 10 ml Schlink bottle, and stir at 25 degrees Celsius for 1 hour, The reaction solution in the Schlinker flask was dissolved in 2 mL of dichloromethane and transferred to a 50 mL round-bottom single-necked flask. The Schlinker flask was rinsed with (3 x 2 mL) of methylene chloride, and the solvent was removed in vacuo to obtain the crude product . The crude product was separated and purified by column chromatography (eluent: dichloromethane). The yield was 98%.
[0021] The structural characterization data of the resulting product are as follows:
[0022]
[0023] 1 H NMR (400MHz, CDCl 3 )δ7.75(dd,J=7.5,2.1Hz,2H),7.49–7.40(m,5H),7.39–7.30(m,3H),6.78(s,1H),4.80(s,2H); 13 C NMR (126MHz, CDCl 3 )δ162.1,152.1,137.7,134.6,131.2,130.8,130.6,129.1,129.0,129.0,128.7,113.8,43.9; IR:1807,1740,1678,1626,1496,1451,1437,1401...
Embodiment 2
[0025] Under a carbon dioxide atmosphere, add a stir bar, 0.5 mmol of N-benzyl-3-(4-fluorophenyl) propynamide, 0.025 mmol of TBD, and 0.2 mL of tetrahydrofuran to a 10 mL Schlinker flask at 25 °C After stirring for 1 hour, the reaction solution in the Schlinker flask was dissolved in 2 mL of dichloromethane and transferred to a 50 mL round-bottomed single-necked flask. The crude product was obtained after solvent. The crude product was separated and purified by column chromatography (eluent: dichloromethane). The yield was 99%.
[0026] The structural characterization data of the resulting product are as follows:
[0027]
[0028] 1 H NMR (400MHz, CDCl 3 )δ7.73(dd, J=8.1,5.7Hz,2H),7.44(d,J=7.4Hz,2H),7.40–7.27(m,3H),7.10(t,J=8.4Hz,2H), 6.72(s,1H),4.78(s,2H). 13 C NMR (101MHz, CDCl 3 )δ165.0, 162.2(d, J=54.1Hz), 151.9, 137.2(d, J=2.7Hz), 134.4, 133.2(d, J=8.6Hz), 129.0, 129.0, 128.6, 127.0(d, J=3.4 Hz), 116.3(d, J=21.9Hz), 112.5, 43.9. IR: 1809, 1736, 1671, 1439, 1407...
Embodiment 3
[0030] Under a carbon dioxide atmosphere, add a stirring bar, 0.5 mmol of N-benzyl-3-(p-tolyl) propynamide, 0.025 mmol of TBD, and 0.2 ml of tetrahydrofuran to a 10 ml Schlink flask, and stir at 25 degrees Celsius for 1 After 2 hours, the reaction solution in the Schlinker flask was dissolved in 2 ml of dichloromethane and transferred to a 50-ml round-bottom single-necked flask. The Schlinker flask was rinsed with (3 × 2 ml) of dichloromethane, and the solvent was removed in vacuo. A crude product is obtained. The crude product was separated and purified by column chromatography (eluent: dichloromethane). The yield was 83%.
[0031] The structural characterization data of the resulting product are as follows:
[0032]
[0033] 1 H NMR (500MHz, CDCl 3 )δ7.62(d, J=8.1Hz, 2H), 7.44(d, J=6.7Hz, 2H), 7.39–7.28(m, 3H), 7.21(d, J=8.0Hz, 2H), 6.74( s,1H),4.77(s,2H),2.37(s,3H). 13 C NMR (126MHz, CDCl 3)δ162.2, 152.2, 141.3, 137.1, 134.6, 131.3, 129.9, 129.0, 129.0, 128.6, 128...
PUM
Abstract
Description
Claims
Application Information
- R&D Engineer
- R&D Manager
- IP Professional
- Industry Leading Data Capabilities
- Powerful AI technology
- Patent DNA Extraction
Browse by: Latest US Patents, China's latest patents, Technical Efficacy Thesaurus, Application Domain, Technology Topic, Popular Technical Reports.
© 2024 PatSnap. All rights reserved.Legal|Privacy policy|Modern Slavery Act Transparency Statement|Sitemap|About US| Contact US: help@patsnap.com