Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Abraded micro-particle online monitoring method adopting temperature control, adsorption and adjacent capacitor

A particle and capacitor technology, applied in the field of hydraulic systems, can solve the problem of unsatisfactory sensor sensitivity, achieve the effect of inhibiting the growth of bubbles, increasing the dielectric constant, and ensuring the reliability of monitoring

Inactive Publication Date: 2016-09-28
SHAOXING UNIVERSITY
View PDF7 Cites 0 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Problems solved by technology

The distance between the excitation plate and the receiving plate of the capacitive sensor is limited by the diameter of the hydraulic pipe. Due to the relatively large diameter of the hydraulic pipe, the sensitivity of the sensor is not ideal.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Abraded micro-particle online monitoring method adopting temperature control, adsorption and adjacent capacitor
  • Abraded micro-particle online monitoring method adopting temperature control, adsorption and adjacent capacitor
  • Abraded micro-particle online monitoring method adopting temperature control, adsorption and adjacent capacitor

Examples

Experimental program
Comparison scheme
Effect test

Embodiment Construction

[0044] Please refer to the attached figure 1 to attach Figure 10 As shown, the present invention is an on-line monitoring method for wear particles using temperature control, adsorption and adjacent capacitors, which consists of a temperature control module 1, a magnetization module 2, a mechanical centrifugal module 3, an adsorption module 5, and an adjacent capacitor particle monitoring module 6. The degaussing module 7 and ECU10 are composed of several parts. Wherein, the temperature control module 1 , the magnetization module 2 , the mechanical centrifugal module 3 , the adsorption module 5 , the adjacent capacitive particle monitoring module 6 and the degaussing module 7 are connected in sequence.

[0045] One end of the temperature control module 1 is provided with an oil inlet 8 for inputting hydraulic oil into the device, which is composed of a heater, a cooler and a temperature sensor. The main purpose of the temperature control module 1 is to provide an optimum ma...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

PropertyMeasurementUnit
thicknessaaaaaaaaaa
diameteraaaaaaaaaa
Login to View More

Abstract

The invention relates to an abraded micro-particle online monitoring method adopting temperature control, adsorption and an adjacent capacitor. Abraded micro-particle online monitoring is carried out by adopting a temperature control module, a magnetizing module, a mechanical centrifuging module, an adsorption module, an adjacent capacitor micro-particle monitoring module and a demagnetizing module in sequence; an oil liquid inlet is arranged at one end of the temperature control module; an oil liquid outlet is arranged at one end of the demagnetizing module; the demagnetizing module is composed of a residual magnetism sensor and a demagnetizing device. By introducing an adjacent capacitor sensor technology based on a capacitor edge effect, non-invasion and restriction-free monitoring of abraded micro-particles is realized; the abraded micro-particles in oil liquid are magnetized through magnetizing and mechanical centrifuging and are polymerized into large particles, and the large particles move to the nearby place of a pipe wall and are adsorbed by the adsorption module, so that the intensity of a monitoring signal output by an adjacent capacitor sensor is improved; the temperature control module is adopted and a polar plate layer structure of the adjacent capacitor sensor is reasonably designed, so that noises are inhibited and the whole performance of an adjacent capacitor sensor monitoring device is optimized.

Description

【Technical field】 [0001] The invention relates to an online monitoring method for wear particles in hydraulic pipeline oil, in particular to an online monitoring method for wear particles using temperature control, adsorption and adjacent capacitors, and belongs to the technical field of hydraulic systems. 【Background technique】 [0002] The wear particles in the hydraulic system oil can not only cause abrasive wear of the kinematic pair, but also hinder the relative movement of the kinematic pair, resulting in malfunction of the control components. Statistics at home and abroad show that 70% of hydraulic machinery failures come from particle pollution of oil. Therefore, on-line monitoring of wear particles in oil has become one of the important ways to reduce wear and hydraulic system failures. [0003] Capacitive sensors are used in the pollution monitoring of machine oil because of their convenient fabrication and low cost. Patent Document 1 (Chinese Invention Patent Au...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
Patent Type & Authority Applications(China)
IPC IPC(8): G01N15/06
CPCG01N15/0656
Inventor 赵徐涛
Owner SHAOXING UNIVERSITY
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products