Stem Cell, Precursor Cell, or Target Cell-Based Treatment of Multi-Organ Failure and Renal Dysfunction
a multi-organ failure and renal dysfunction technology, applied in animal repellents, drug compositions, peptide/protein ingredients, etc., can solve the problems of recurrent infections, morbidity and death, and major unresolved medical problems of multi-organ failure (mof)
- Summary
- Abstract
- Description
- Claims
- Application Information
AI Technical Summary
Benefits of technology
Problems solved by technology
Method used
Examples
example 1
Determine the Relative Renoprotective Potency of HSC, MSC, Precursor Vascular Endothelial or Tubular Cells Derived from MSC by Pre-Differentiation, Hemangioblasts, of Fully Differentiated Vascular Endothelial Cells, and of Fibroblasts Administered to Rats with ARF
[0070]In experiments, adult Sprague-Dawley or Fisher 344 rats (male or female) were studied. Ischemia / reperfusion-type of ARF (“ischemic ARF”) is induced in anesthetized rats by timed clamping of both renal pedicles, thereby interrupting the blood supply to the kidneys causing an “ischemic” insult that results in acute loss of kidney function, i.e., ARF. A model of severe ARF in rats used 45 minutes of bilateral renal ischemia, resulting in a rise in serum creatinine to 3.5-5.0 mg / dL, a glomerular filtration rate of <15% of normal, and a mortality of 50% at 72 hrs post reflow. Histological examination of the kidneys from this severe ARF model shows wide spread tubular necrosis, apoptosis and severe vascular congestion with ...
example 2
Determine the Ratio of MSC and HSC for Co-Administration Therapy
[0077]Using as a guideline the approximate ratio of HSC and MSC numbers in the normal bone marrow, protocols in which the ratios or doses of co-administered HSC / MSC given to rats with ARF, models and animal strains as in Example 1, were varied.
[0078]The relative renoprotective potency of various SC treatment protocols was tested by infusing intravenously (jugular, femoral or tail vein) or intra-arterially (into suprarenal aorta via carotid or femoral artery) HSC alone, MSC alone or HSC in combination with MSC at a HSC / MSC ratio of 1:1, 3:1, 5:1 or 8:1 to rats immediately after induction of severe or modest ARF as well as infusion of HSC alone, MSC alone or HSC / MSC in ratios of 1:1, 3:1, 5:1 or 8:1 24 hrs after induction of severe or modest ARF in rats (see above). The total number of cells administered in all studies was about 105 to 106 cells / animal.
[0079]Renal function, histological studies and outcomes in the experim...
example 3
Determine the Relative Potency for Wound Healing of HSC, MSC, Precursor Vascular Endothelial or Tubular Cells Derived from MSC by Pre-Differentiation, Hemangioblasts, of Fully Differentiated Vascular Endothelial Cells, and Define the Optimal Ratio of MSC and HSC for Co-Administration for Wound Healing
[0083]The administration of individual cell types, as above, or MSC and HSC mixes to rats with ARF resulted in improved outcome (see above). Also, the abdominal, well-healed incision initially created for the induction of ARF (clamping of both renal arteries), contained large numbers (˜40%) of tagged MSC and HSC-derived vascular and other cells, indicating that MSCs and HSCs can powerfully support the process of wound healing that includes angiogenesis. Further studies in animals with experimental abdominal wound infections alone or in the setting of LPS-induced shock with MOF, or in rats with combined ischemic ARF and cecal perforation-induced peritonitis / sepsis will examine whether ce...
PUM
Abstract
Description
Claims
Application Information
- R&D Engineer
- R&D Manager
- IP Professional
- Industry Leading Data Capabilities
- Powerful AI technology
- Patent DNA Extraction
Browse by: Latest US Patents, China's latest patents, Technical Efficacy Thesaurus, Application Domain, Technology Topic, Popular Technical Reports.
© 2024 PatSnap. All rights reserved.Legal|Privacy policy|Modern Slavery Act Transparency Statement|Sitemap|About US| Contact US: help@patsnap.com