Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

System and method for high sensitivity optical detection of gases

a high-sensitivity optical and gas detection technology, applied in the field of hazardous and/or toxic gases, can solve problems such as problems in the detection of a target species

Inactive Publication Date: 2007-10-04
PRANALYTICA
View PDF20 Cites 57 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0027] The simulation model developed to evaluate the sensor performance, includes a model of realistically contaminated air, a model of actual sensor performance, and quantitative spectral libraries. The results of an L-PAS sensor performance simulation for CWA detection are set forth with the analysis extended to predict performance of notional sensors with different operational characteristics and different levels of air contamination, thus, providing “scaling laws” for optical sensors and permitting sensor performance evaluations in extreme situations.
[0031] In one embodiment, a gas detector has an optical analyzer detecting in a sample of gas optical absorbance of the sample at a plurality of wavelengths. The optical analyzer then transmits an absorbancy signal representative of optical absorbancy for each respective one of the plurality of wavelengths. A spectral library of gas species absorbing one or more of the plurality of wavelengths is provided that includes determined absorptions for expected gases and target gases. In conjunction with this library, a processor receives the absorbancy signals from the optical analyzer and applies pattern recognition (such as least squares fitting) using the absorbancy signals and the determined absorptions to provide mole fraction quantities for each of the expected gases and each of the target gases. In this way, the sample of gas may be analyzed for presence and quantity of expected gases and target gases.
[0032] In another embodiment, a high sensitivity gas detector for detection of hazardous gases with reduced probability of false positive and false negative signals uses a light source transmitting modulated tunable radiation to illuminate a photoacoustic test cell. The photoacoustic test cell has a microphone system that transmits a photoacoustic signal to a signal receiver that receives the microphone signal. The signal receiver transmits a normalized signal to a signal processor which analyzes the normalized signal in conjunction with at least one entry in a library for signal signatures for gases detectable by the radiation. The signal processor transmits a resulting signal indicating a quantity of the hazardous gases in the test cell. In this way, detection of known hazardous gases can be made by illuminating sample air or other gas in the photoacoustic test cell.

Problems solved by technology

Problems arise in the detecting of a target species in the presence of a multitude of interferences that are often are stochastic.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • System and method for high sensitivity optical detection of gases
  • System and method for high sensitivity optical detection of gases
  • System and method for high sensitivity optical detection of gases

Examples

Experimental program
Comparison scheme
Effect test

Embodiment Construction

)

[0048] The detailed description set forth below in connection with the appended drawings is intended as a description of presently-preferred embodiments of the invention and is not intended to represent the only forms in which the present invention may be constructed and / or utilized. The description sets forth the functions and the sequence of steps for constructing and operating the invention in connection with the illustrated embodiments. However, it is to be understood that the same or equivalent functions and sequences may be accomplished by different embodiments that are also intended to be encompassed within the spirit and scope of the invention.

[0049] As set forth herein, the use by example of L-PAS is advantageous because reliable instruments based on this technique are commercially available for ppb (parts per billion) and sub-ppb detection of a variety of relevant trace gases and because it meets important sensitivity requirements.

[0050] However, a wide variety of optic...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

PropertyMeasurementUnit
wavelengthsaaaaaaaaaa
wavelengthsaaaaaaaaaa
wavelengthsaaaaaaaaaa
Login to View More

Abstract

A method and apparatus architecture for detecting gases, particularly hazardous gases which should be detected in miniscule amounts. High sensitivity detection of chemical warfare agents (CWAs) is set forth with very low probability of false positives (PFP) by the use of an innovative laser-photoacoustic spectrometer (L-PAS). Detection of diisopropyl methylphosphonate (DIMP), a decomposition product of Sarin and a relatively harmless surrogate for the nerve gases, is made in the presence of other gases that are expected to be interferences in an urban setting. Detection sensitivity for DIMP in the presence of these interferences of better than 0.45 ppb, which satisfies current homeland and military security requirements is shown as well as the first analysis of optical techniques for the detection of chemical warfare agents (CWAs) and toxic industrial chemicals (TICs) in real world conditions.

Description

CROSS-REFERENCES TO RELATED APPLICATIONS [0001] This patent application is related to and claims priority from U.S. Provisional Patent Application Ser. No. 60 / 621,099 filed Oct. 22, 2004 entitled GAS DETECTOR (aka SYSTEM AND METHOD FOR HIGH SENSITIVITY OPTICAL DETECTION OF GASES) which application is incorporated herein by this reference thereto.COPYRIGHT AUTHORIZATION [0002] Portions of the disclosure of this patent document may contain material which is subject to copyright and / or mask work protection. The copyright and / or mask work owner has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure, as it appears in the Patent and Trademark Office patent file or records, but otherwise reserves all copyright and / or mask work rights whatsoever. BACKGROUND OF THE INVENTION [0003] 1. Field of the Invention [0004] This invention relates to the detection of hazardous and / or toxic gases, including warfare gases, and more particularly to a metho...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
Patent Type & Authority Applications(United States)
IPC IPC(8): G01N21/61
CPCG01J3/42G01N21/1702G01N21/3504G01N2201/1293G01N2021/1704G01N2021/3595G01N21/39
Inventor PATEL, C. KUMAR N.PUSHKARSKY, MICHAEL E.WEBBER, MICHAEL C.MACDONALD, TYSON
Owner PRANALYTICA
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products