Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Process for extrusion

a technology of extrusion and process, which is applied in the field of extrusion, can solve the problems of narrow molecular weight distribution, inability to improve the processability of resins into blown films in terms of bubble stability, and resins generally do not achieve a high level of bubble stability

Inactive Publication Date: 2002-06-20
UNION CARBIDE CHEM & PLASTICS TECH CORP
View PDF0 Cites 9 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0023] In two stage single screw extruders, which are typically flood fed, i.e., the feed section is essentially filled with particulate (unmolten) polymer, temperature control is typically adjusted by screw speed, extruder discharge pressure and barrel temperatures. In contrast to high capacity twin screw mixers, the overall capacity of single screw extruders is much lower on a rate to barrel diameter basis and therefore barrel temperature control has an increased effect on polymer temperature.
[0024] In flood fed extruders, although the feed section is filled with particulate polymer, typically in granular or pellet form, the gaseous mixture can still be successfully introduced due to the porosity of the particulates. In fact, depending on the design of the feed section, the flow rate of the gaseous mixture may need to be controlled to insure that the particulates in the feed section are not inadvertently fluidized, possibly reducing the overall capacity of the extruder.
[0027] In order to reduce the cost and keep the tailoring operation as simple as possible, which, in turn, usually improves the overall operation, like gaseous mixtures can be simultaneously introduced into each partially filled zone. Alternatively, depending on the degree of tailoring required, gaseous mixtures with higher or lower oxygen concentrations can be separately introduced into each partially filled zone.
[0030] As noted above, the process of the invention enhances the bubble stability of the polyethylene while maintaining acceptable solid state strength of the blown film in terms of dart drop strength.
[0033] One would like to produce a final film with close tolerance in film thickness under stable conditions of operation, i.e., the shape of the bubble remains the same without any change over time. The highest extrusion rate and the highest wind-up speed that can be used without changing the shape of the bubble provides the operating constraints for a given resin in a given system (extruder, air ring, cooling air temperature, etc.). For example, at a given extrusion rate, if one can increase the wind-up speed to make thinner film without losing the shape of the bubble, then the resin is said to have good high speed extrusion bubble stability.
[0034] Often, the bubble stability within a given extrusion system is directly related to the molecular characteristics which influence the behavior of the bubble. For example, it is easier to stretch chewing gum into a very thin thread without breakage than a rubber band. A rubber band stiffens as it is stretched and, beyond a certain point, it will break. However, the stiffening of the rubber band also gives it better stability since it will be less sensitive to external disturbances. This is not the case with the chewing gum since it deforms very easily and is very sensitive to disturbances. In the blown film concept, one would like to have rubber band behavior as the bubble is being blown and stretched rather than a chewing gum behavior. In this invention, the addition of oxygen in the two or more partially filled zone has been found to provide better high speed extrusion bubble stability, i.e., the film can be drawn at higher wind-up speeds to produce thinner films. Further, when the resin pellets are subjected to conventional blown film extrusion, the dart drop strength of the blown film is also improved. Dart drop strength is measured in accordance with ASTM D-1709. The dart drop is reported in grams for a given film thickness. The combination of enhanced bubble stability and dart drop strength is unexpected.

Problems solved by technology

This development has tended towards narrowing the molecular weight distribution of the resin; however, narrow molecular weight distributions are not desirable for blown film resins, i.e., the narrow molecular weight distribution does not improve the processability of the resins into blown film in terms of bubble stability.
While the resins produced by these two stage processes can be turned into products having superior mechanical strength and other advantageous physical and chemical characteristics, the resins generally do not achieve a high level of bubble stability.
Unfortunately, excessive amounts of free radical generators can cause chain scission, which is characterized by a rupture of chemical bonds in the backbone and side chains of the polymer.
The result is a decrease in the solid state strength of the resin product.
In addition, organic peroxides increase operating costs because of the cost of the peroxides; additional equipment needed to safely handle the peroxides; and the presence of undesirable by-products, particularly when the tailored polymer will be used in FDA applications.
In the case of oxygen tailoring, when melt temperatures become to high, the solid state strength of the blown film becomes unacceptably low.
Also, high amounts of oxygen, e.g., 21 percent based on the volume of the gases used in extrusion systems, are often required due to the design of the equipment.
But too much oxygen in the presence of unmelted polymer in the form of granules or powders can lead to dust explosions.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Examples

Experimental program
Comparison scheme
Effect test

examples 1 to 7

[0081] Ethylene is copolymerized with 1-hexene in each of two fluidized bed reactors. The total pressure in each reactor is 300 psia. Each polymerization is continuously conducted after equilibrium is reached under conditions set forth in Table I. Polymerization is initiated in the first reactor by continuously feeding the above catalyst precursor and cocatalyst triethylaluminum (TEAL) into a fluidized bed of polyethylene granules together with ethylene, 1-hexene, and hydrogen. The TEAL is first dissolved in isopentane (5 percent by weight TEAL). The resulting copolymer mixed with active catalyst is withdrawn from the first reactor and transferred to the second reactor using nitrogen as a transfer medium. The second reactor also contains a fluidized bed of polyethylene granules. Again, ethylene, 1-hexene, and hydrogen are introduced into the second reactor where the gases come into contact with the copolymer and catalyst from the first reactor. Additional cocatalyst is also introduc...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

PropertyMeasurementUnit
Fractionaaaaaaaaaa
Percent by volumeaaaaaaaaaa
Percent by volumeaaaaaaaaaa
Login to View More

Abstract

A process for the extrusion of polyethylene having a broad molecular weight distribution wherein the polyethylene is prepared in pellet form, said extrusion taking place in a pelletizing extruder having one or more zones essentially filled with polyethylene and two or more zones partially filled with polyethylene including a feed zone comprising (i) introducing the polyethylene into the extruder at a temperature sufficient to melt the polyethylene; (ii) introducing a mixture of an inert gas and oxygen into at least one partially filled zone with the exception of the feed zone, said mixture containing about 1 to about 21 percent by volume oxygen based on the volume of the gaseous mixture; (iii) passing the molten polyethylene through each zone at melt temperature; and (iv) extruding the polyethylene into pellets and cooling same.

Description

[0001] This application is a continuation-in-part of application Ser. No. 09 / 022,793 filed on Feb. 13, 1998, which is a continuation of application Ser. No. 08 / 671,166 filed on Jun. 26, 1996.[0002] This invention relates to a process for the extrusion of polyethylene into pellets useful in the production of blown film.BACKGROUND INFORMATION[0003] Ziegler-type catalysts have undergone development over the years to improve the economy and quality of various polyethylene products. This development has tended towards narrowing the molecular weight distribution of the resin; however, narrow molecular weight distributions are not desirable for blown film resins, i.e., the narrow molecular weight distribution does not improve the processability of the resins into blown film in terms of bubble stability. Rather, bubble stability is a characteristic of broad molecular weight distribution resins.[0004] A particularly good technique for producing broad molecular weight distribution polyethylen...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
IPC IPC(8): B29B9/06B29B9/12B29C48/04B29C48/08B29C48/10
CPCB29B9/06B29B9/12B29C47/0004B29L2007/008B29C47/0057B29K2023/06B29C47/0026B29C48/022B29C48/04B29C48/08B29C48/10B29C48/0018B29C48/832
Inventor NEUBAUER, ANTHONY CHARLES
Owner UNION CARBIDE CHEM & PLASTICS TECH CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products