Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Inter-satellite laser interference frequency planning simulation verification system for time sequence reinforcement learning

A technology of laser interference and frequency planning, applied in the field of optical laser interferometry, to achieve the effect of reducing risks

Active Publication Date: 2021-11-05
NAT SPACE SCI CENT CAS
View PDF6 Cites 6 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Problems solved by technology

[0005] The purpose of the present invention is to overcome the defects of the existing frequency planning scheme and verify the reliability of the frequency planning scheme, and propose a time-sequence reinforcement learning intersatellite laser interference frequency planning simulation verification system

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Inter-satellite laser interference frequency planning simulation verification system for time sequence reinforcement learning
  • Inter-satellite laser interference frequency planning simulation verification system for time sequence reinforcement learning
  • Inter-satellite laser interference frequency planning simulation verification system for time sequence reinforcement learning

Examples

Experimental program
Comparison scheme
Effect test

Embodiment 1

[0105] Such as figure 1 As shown, Embodiment 1 of the present invention proposes a system for formulating a time series retrospective reinforcement learning model for frequency planning schemes, the system includes six optical platforms A1, A2, A3, A5, A4, A6. The angle between optical tables A1 and A2 is 60 degrees for a group of adjacent optical tables, the angle between A3 and A4 is 60 degrees for a group of adjacent optical tables, the angle between A5 and A6 is 60 degrees for a group of adjacent optical tables optical table. A1 and A6 are a group of relative optical tables, A2 and A3 are a group of relative optical tables, A4 and A5 are a group of relative optical tables.

[0106] Each optical platform includes tunable lasers, multiple beam splitters, multiple one-way glasses, multiple four-quadrant photodetectors, multiple beam couplers, and a Doppler frequency shift interference generator. The optical platforms A1, A2, A3, A5, A4, and A6 have the same structure and a...

Embodiment 2

[0122] Such as Figure 5 As shown, Embodiment 2 of the present invention proposes a time-series reinforcement learning method for simulation and verification of intersatellite laser interference frequency planning, which is implemented based on the system of Embodiment 1. Specific methods include:

[0123] Calculate the Doppler frequency shift at a specified moment according to the orbit data, and store it in the Doppler frequency shift interference information memory of the storage component;

[0124] Input the Doppler frequency shift at a specified moment into the decision model that has been established and trained to obtain the laser frequency to be emitted at each moment of each laser interference optical platform, form a frequency planning scheme including each moment and store it in the reinforcement learning of the storage component policy memory;

[0125] Input the frequency planning scheme into the laser transmitter of each laser interferometry optical platform;

...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

No PUM Login to View More

Abstract

The invention discloses an inter-satellite laser interference frequency planning simulation verification system for time sequence reinforcement learning. The system comprises a laser interference optical platform group, a storage assembly and a display terminal, wherein the laser interference optical platform group comprises six laser interference optical platforms with the same structure, every two laser interference optical platforms form a pair, the frequency and the phase of laser are adjusted in real time according to a frequency planning scheme, and frequency shift is carried out on incident laser according to Doppler interference frequency information, so that the interference of the satellite in the space due to the Doppler phenomenon is simulated; the storage component is used for storing a pre-established and trained decision model, a frequency planning scheme determined by the decision model and Doppler interference frequency information corresponding to each moment of an experiment, and storing a frequency planning scheme selected in the experiment; the decision model is obtained by training through a time sequence backtracking reinforcement learning method; and the display terminal is used for displaying the Doppler interference frequency information and the laser beat frequency information in real time.

Description

technical field [0001] The invention relates to the field of optical laser interferometry and the field of computer reinforcement learning technology, and in particular to a time sequence reinforcement learning simulation verification system for intersatellite laser interference frequency planning simulation. Background technique [0002] Reinforcement learning is a new direction in the field of machine learning. Its purpose is to learn through the actions chosen by the machine independently and the punishment of environmental feedback. In the process of "seeking advantages and avoiding disadvantages" step by step, the "intelligent body" controlled by the program gradually understands the environment and makes the optimal strategy selection through continuous trial and error. The algorithm needs to set the environment of the agent in advance and the reward after the agent chooses an action. Its ultimate goal is to enable the agent to have the ability to analyze the environm...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
Patent Type & Authority Applications(China)
IPC IPC(8): G06F30/27G06N20/00
CPCG06F30/27G06N20/00
Inventor 张佳锋马晓珊杨震彭晓东唐文林强丽娥张玉珠高辰赵梦园
Owner NAT SPACE SCI CENT CAS
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products