Method for synthesizing a modified amino sulfonate water-reducing agent by utilizing wastewater generated in dye intermediate production process
A dye intermediate and sulfamate technology is applied in the field of synthesizing modified sulfamate water-reducing agents, which can solve the problems of difficult reuse and complex components, and achieve improved service life, low dosage, and dispersing ability. strong effect
- Summary
- Abstract
- Description
- Claims
- Application Information
AI Technical Summary
Problems solved by technology
Method used
Image
Examples
Embodiment 1
[0028] Put 30g of organic matter extracted from H acid wastewater (including sodium sulfate content: 13.2%), 18g of sodium sulfanilate and 32g of phenol into a four-necked reaction flask, add 185g of water, and heat up while stirring. When the temperature rises to 45 At ℃, use 32% ionic membrane NaOH solution to adjust the pH value of the solution to 8.8, continue to heat up to 70℃, and start to drop 26.5g of 37% formaldehyde at this temperature. After the dropwise addition of formaldehyde is completed, the temperature is raised to 98°C, and the reaction is maintained for 8 hours. After the end of the heat preservation reaction, the pH value of the material is adjusted to 11.2 with 32% ionic membrane NaOH solution, and the reaction is carried out at 98°C for 4 hours, and the reaction ends. Cool down to room temperature and unload to obtain the modified sulfamate superplasticizer, numbered ANS-01.
Embodiment 2
[0030] 22g of organic matter extracted in the K-acid wastewater (wherein sodium sulfate content: 9.6%), 15g of sodium sulfanilate and 40g of cresol are put into a four-necked reaction flask, add 175g of water, heat up while stirring, when the temperature rises to At 45°C, use 32% ionic membrane NaOH solution to adjust the pH of the solution to 8.3, continue to heat up to 70°C, and start adding 30.5g of 37% formaldehyde dropwise at this temperature. After the dropwise addition of formaldehyde is completed, the temperature is raised to 98°C, and the reaction is maintained for 10 hours. After the end of the heat preservation reaction, the pH value of the material is adjusted to 11.5 with 32% ionic membrane NaOH solution, and the reaction is carried out at 98°C for 3 hours, and the reaction is completed. Cool down to room temperature and unload to obtain the modified sulfamate superplasticizer, numbered ANS-02.
Embodiment 3
[0032] 13g of organic matter extracted from J acid wastewater (including sodium sulfate content: 5.8%), 16g of organic matter extracted from G salt wastewater (including potassium sulfate content: 8.6%), 17g of sodium p-aminobenzenesulfonate, 40g of bisphenol A and high Active lignin 5g is put into the four-necked reaction flask, add water 210g, heat up while stirring, when the temperature rises to 45°C, use 32% ionic membrane NaOH solution to adjust the pH value of the solution to 7.7, continue to heat up to 70°C, and At this temperature, 34.6 g of 37% formaldehyde was added dropwise. After the dropwise addition of formaldehyde is completed, the temperature is raised to 100°C, and the reaction is maintained for 9 hours. After the end of the heat preservation reaction, the pH value of the material is adjusted to 11.5 with 32% ionic membrane NaOH solution, and the reaction is carried out at 100°C for 5 hours, and the reaction ends. Cool down to room temperature and unload to ob...
PUM
Abstract
Description
Claims
Application Information
- R&D Engineer
- R&D Manager
- IP Professional
- Industry Leading Data Capabilities
- Powerful AI technology
- Patent DNA Extraction
Browse by: Latest US Patents, China's latest patents, Technical Efficacy Thesaurus, Application Domain, Technology Topic, Popular Technical Reports.
© 2024 PatSnap. All rights reserved.Legal|Privacy policy|Modern Slavery Act Transparency Statement|Sitemap|About US| Contact US: help@patsnap.com